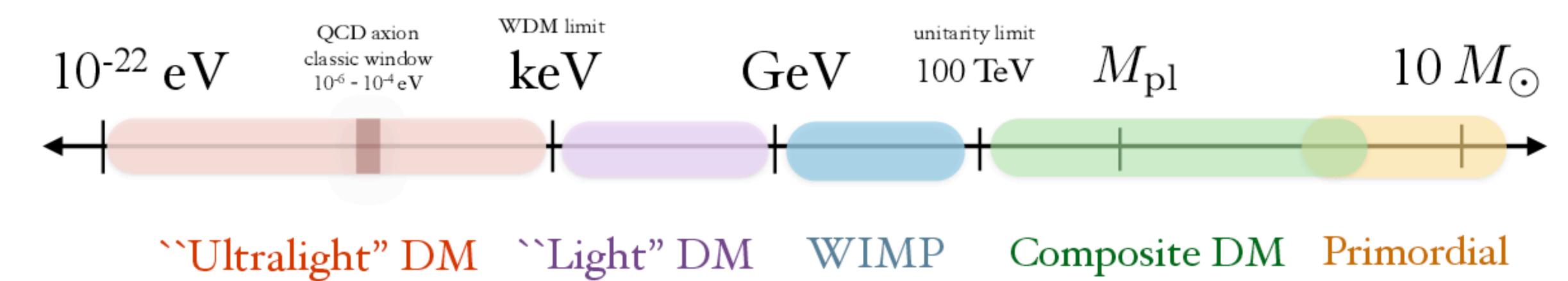
PHYSICS-INFORMED MACHINE LEARNING FOR COSMOLOGICAL SIMULATIONS

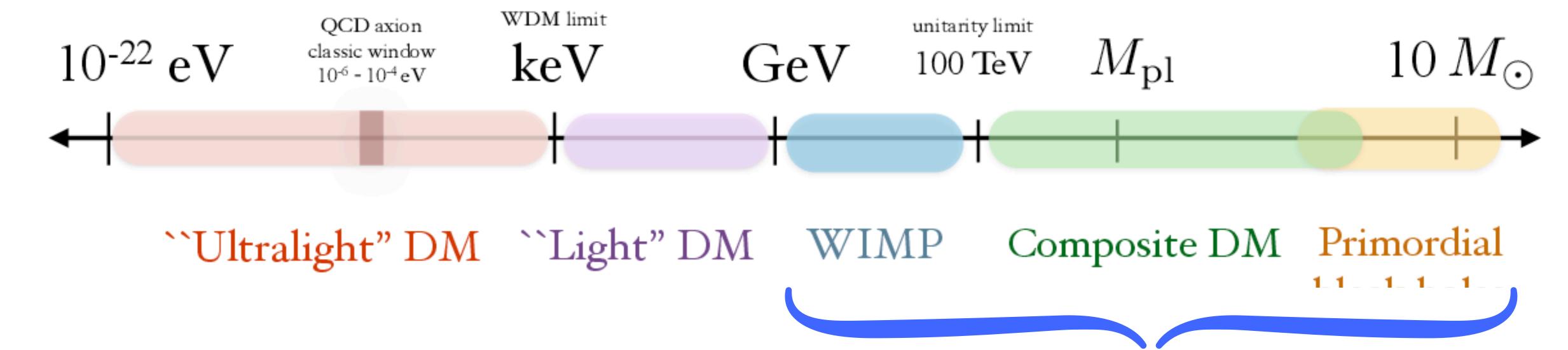
MATTER CONTENT OF THE UNIVERSE Hydrogen Helium, Stars, Neutrinos, 4.0%& Heavy Elements 84.5% Dark Matter

NATURE OF DARK MATTER

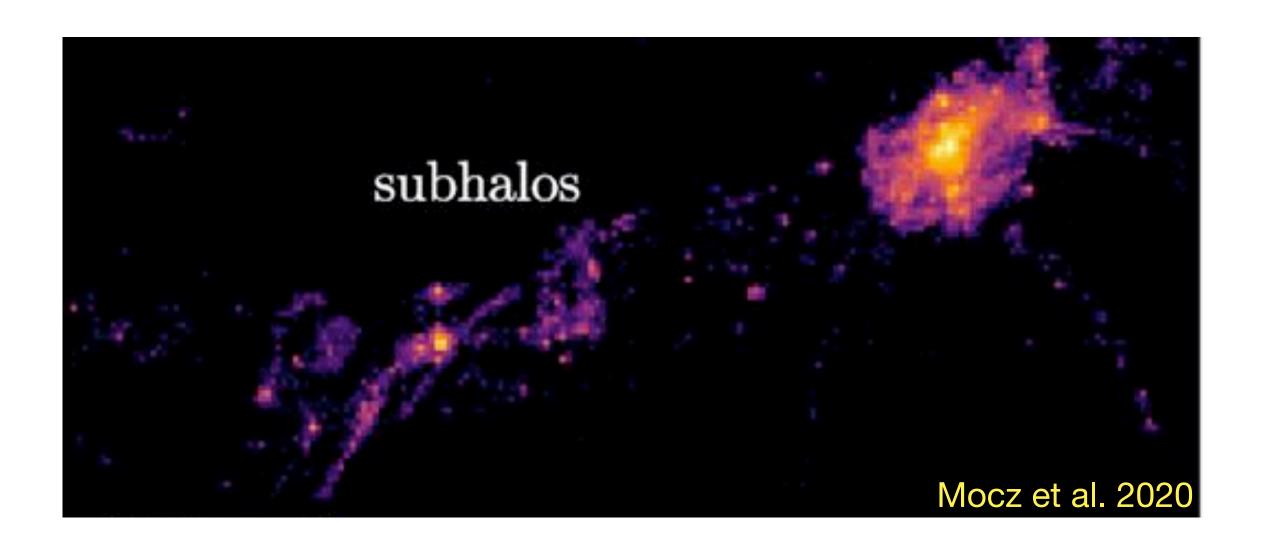


black holes

NATURE OF DARK MATTER

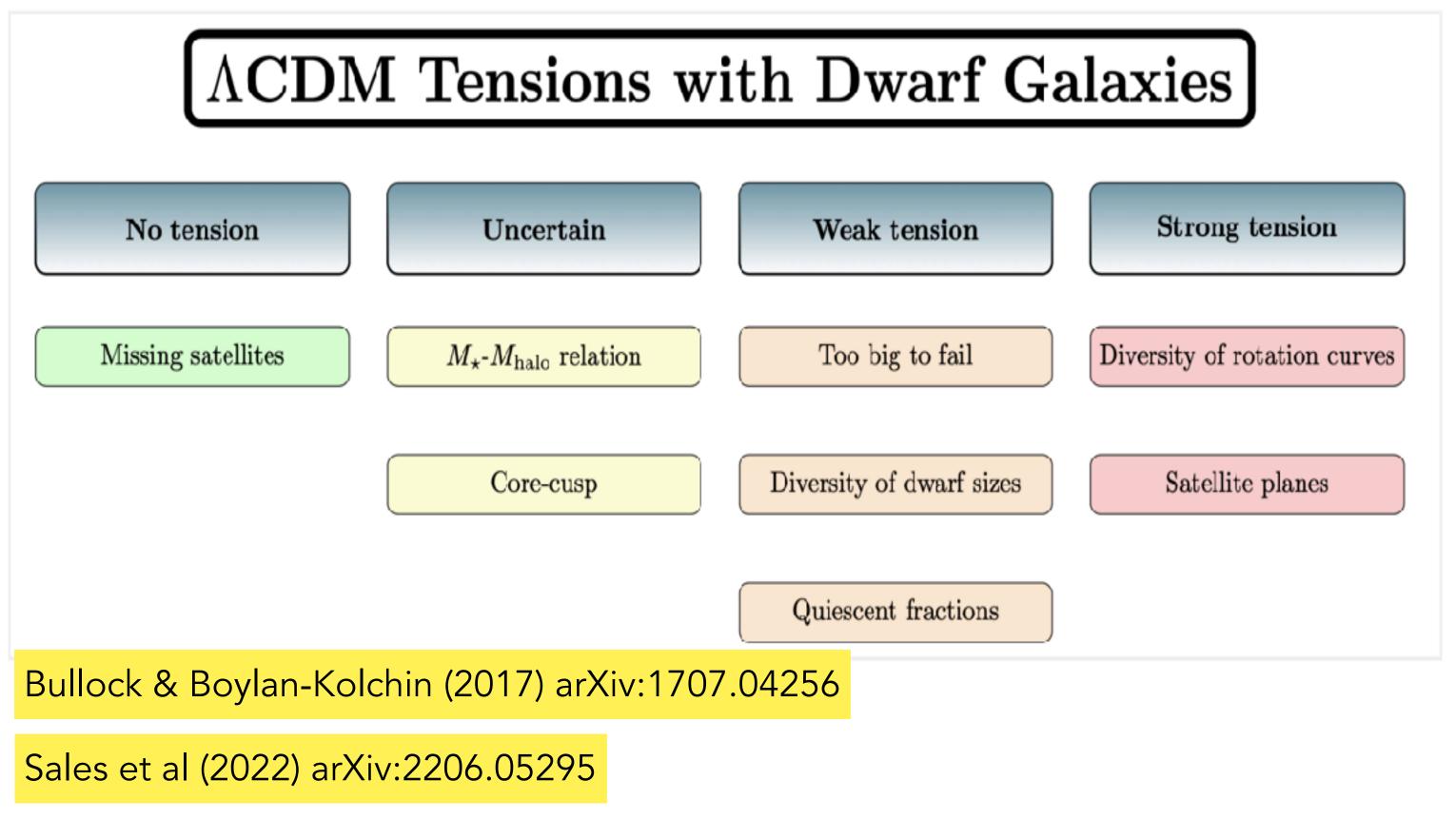


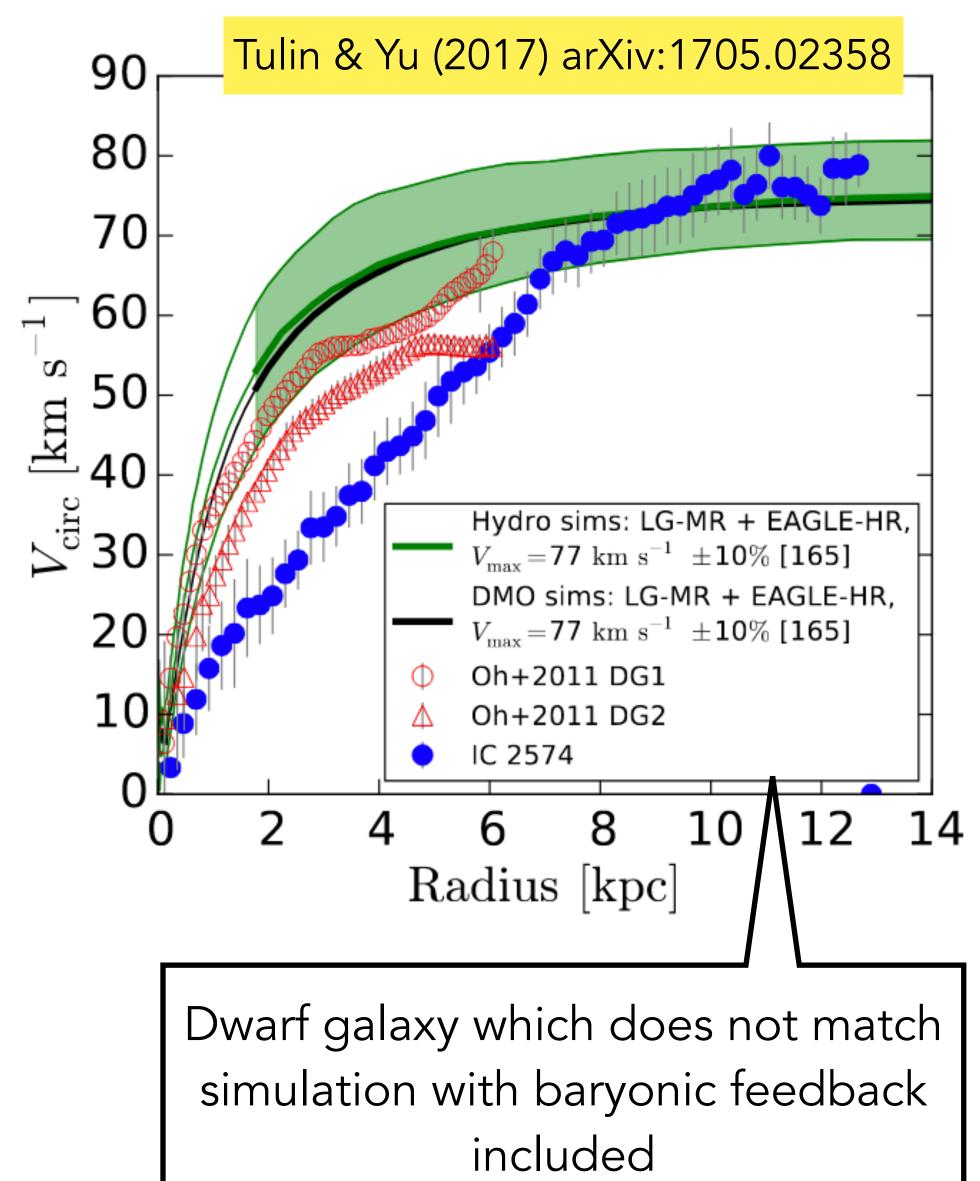
Cold Dark Matter (CDM): dark matter is a cold, collisonless fluid



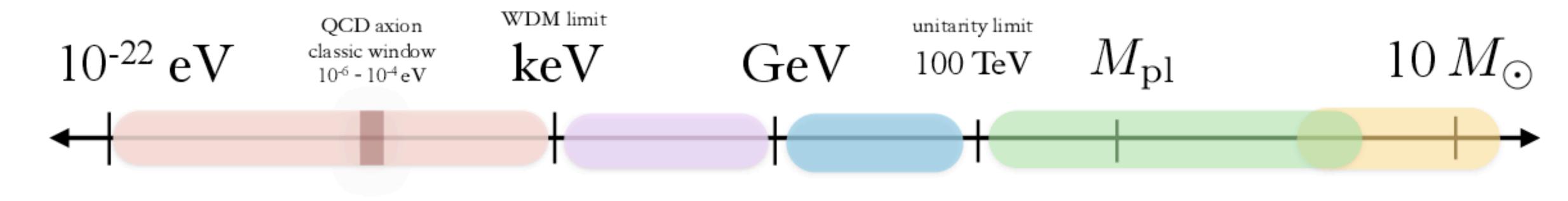
PROBLEMS WITH COLD DARK MATTER

Cold DM Predicts the large scale structure very well, but has some problems at smaller scales





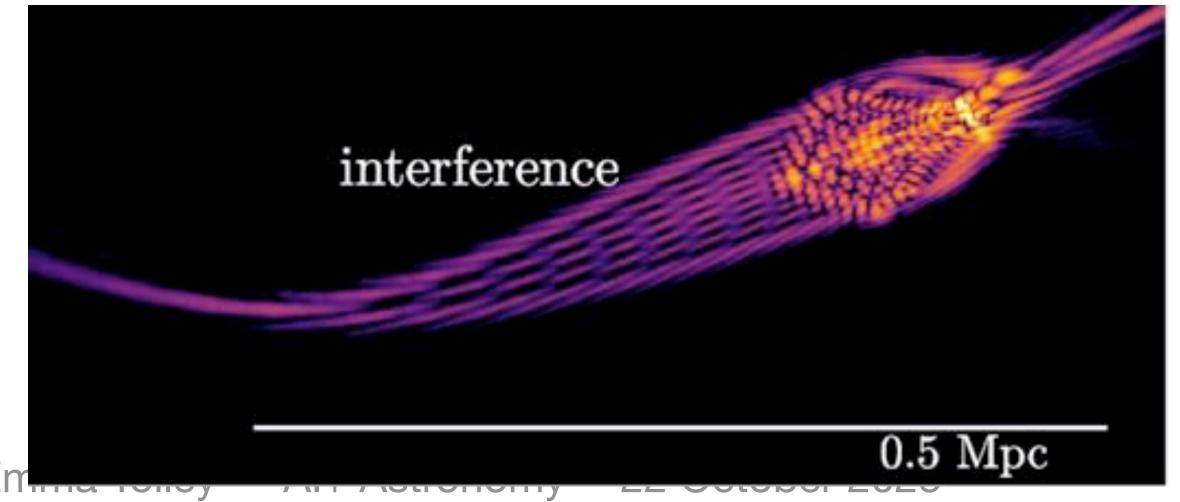
FUZZY VS COLD DARK MATTER



Fuzzy Dark Matter (FDM): dark matter

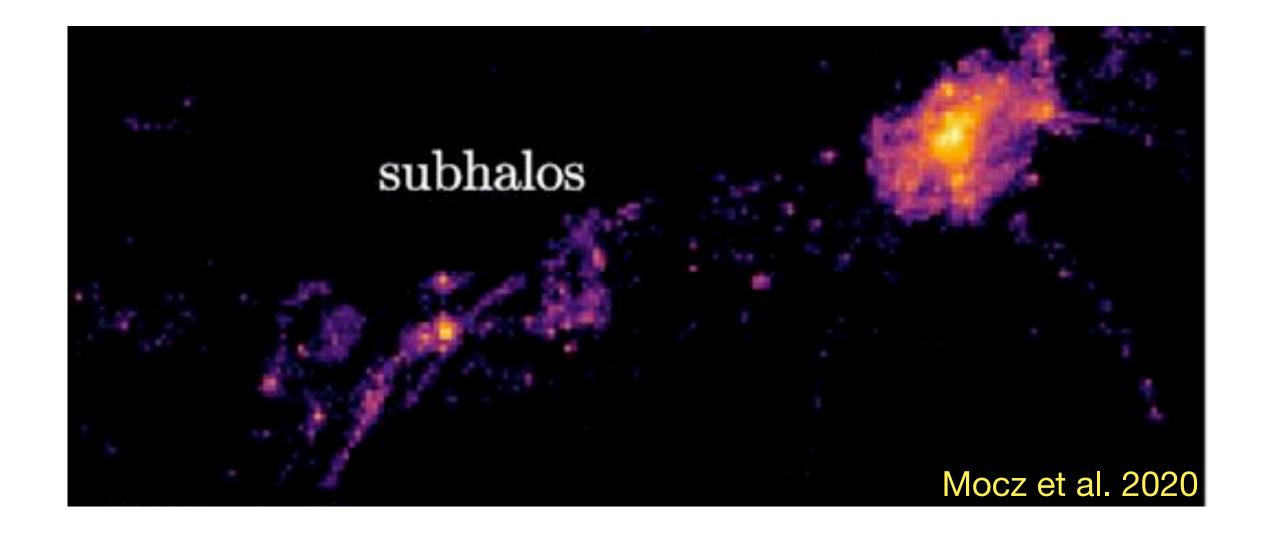
"Ultralight" DM "Light" DM

is a quantum wave with a kpc-scale deBroglie wavelength



Cold Dark Matter (CDM): dark matter is a cold, collisonless fluid

Composite DM Primordial



FUZZY VS COLD DARK MATTER

FDM obeys the Shroedinger-Poisson Equations

$$i\hbar rac{\partial \psi}{\partial t} = -rac{\hbar^2}{2m}
abla^2 \psi + mV \psi,$$

$$abla^2 V = 4\pi G (\rho - \overline{\rho}),$$

$$abla \equiv |\psi|^2$$

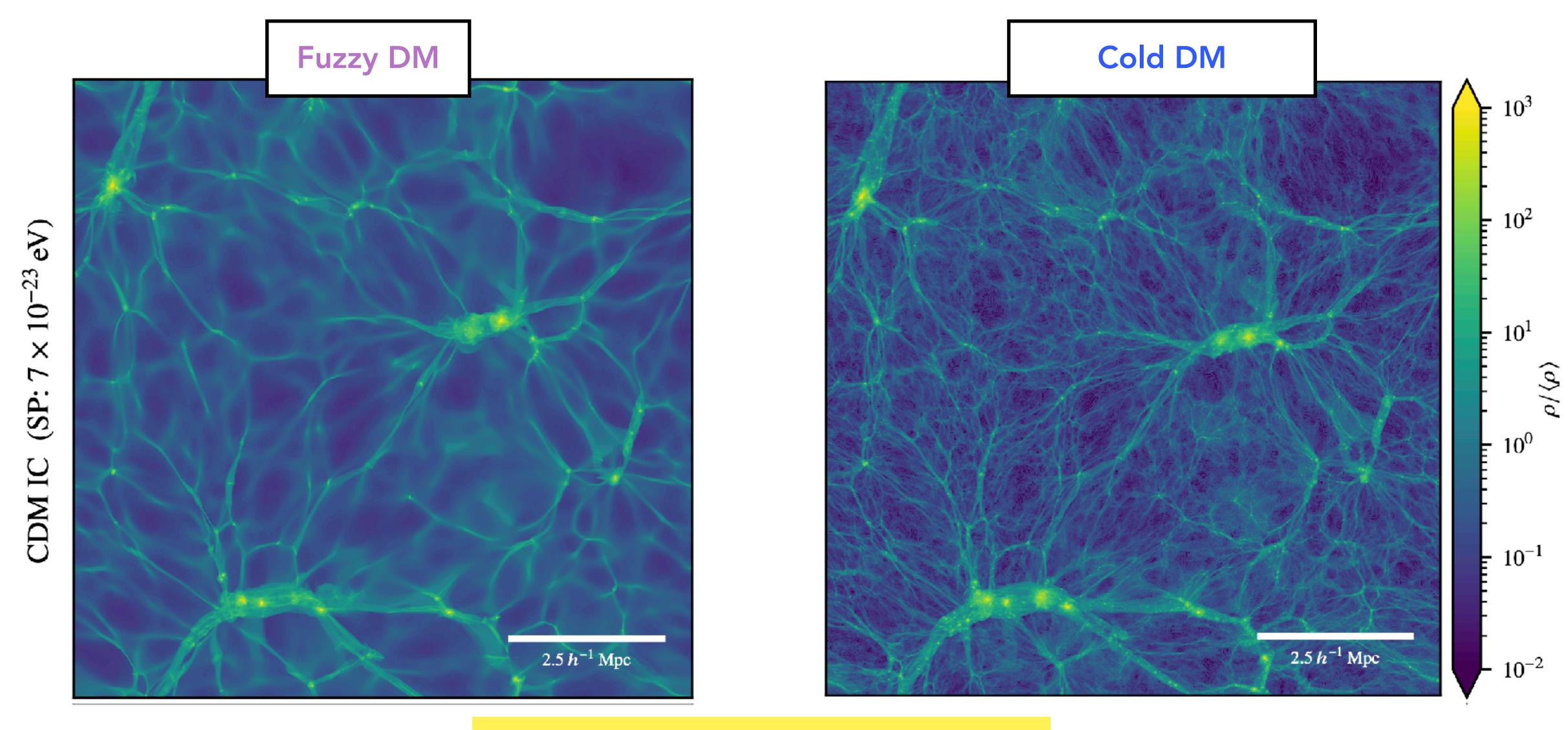
CDM obeys the Vlasov-Poisson Equations

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}} - \nabla V \cdot \frac{\partial f}{\partial \mathbf{v}} = 0,$$

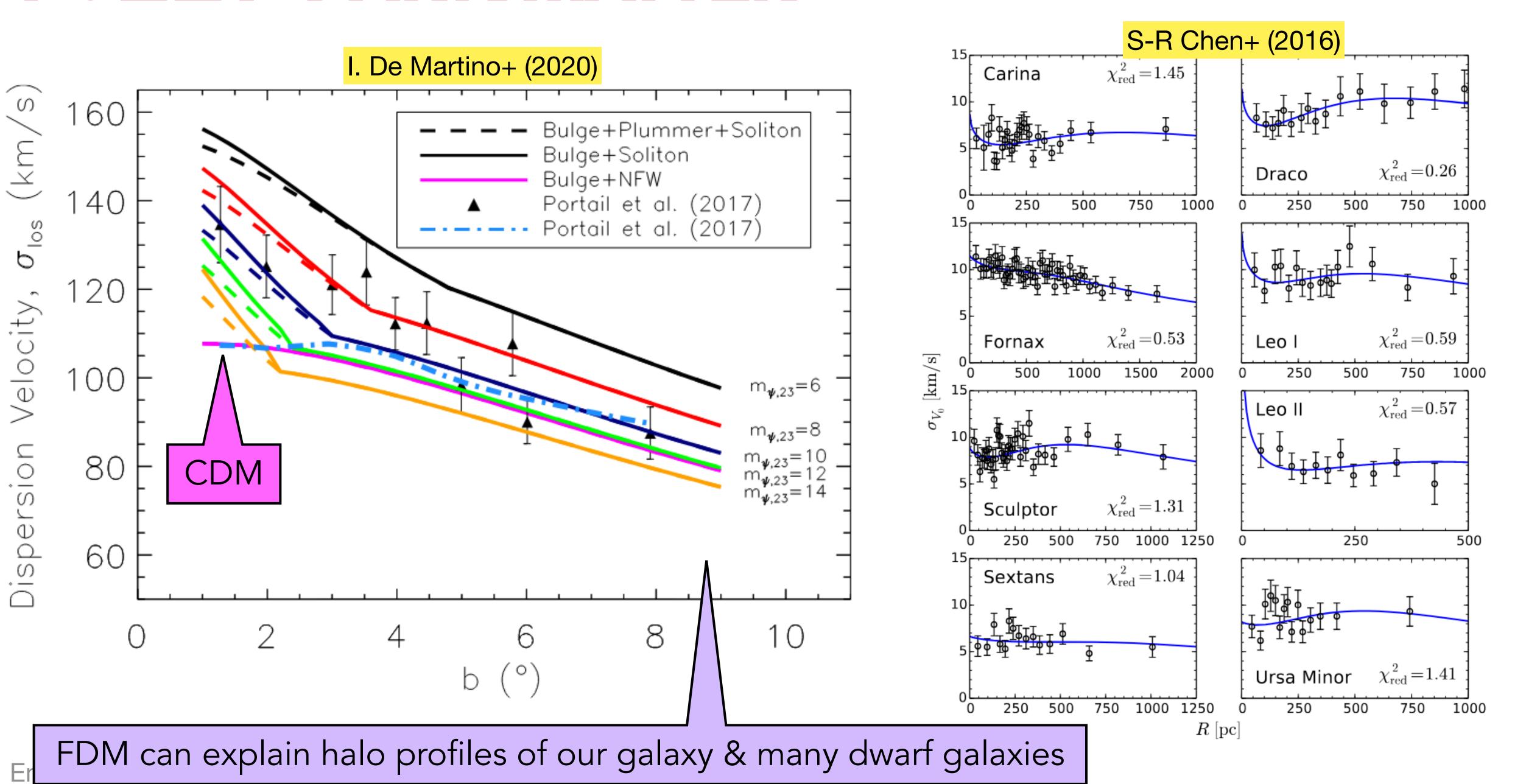
$$\nabla^2 V = 4\pi G(\rho - \overline{\rho}),$$

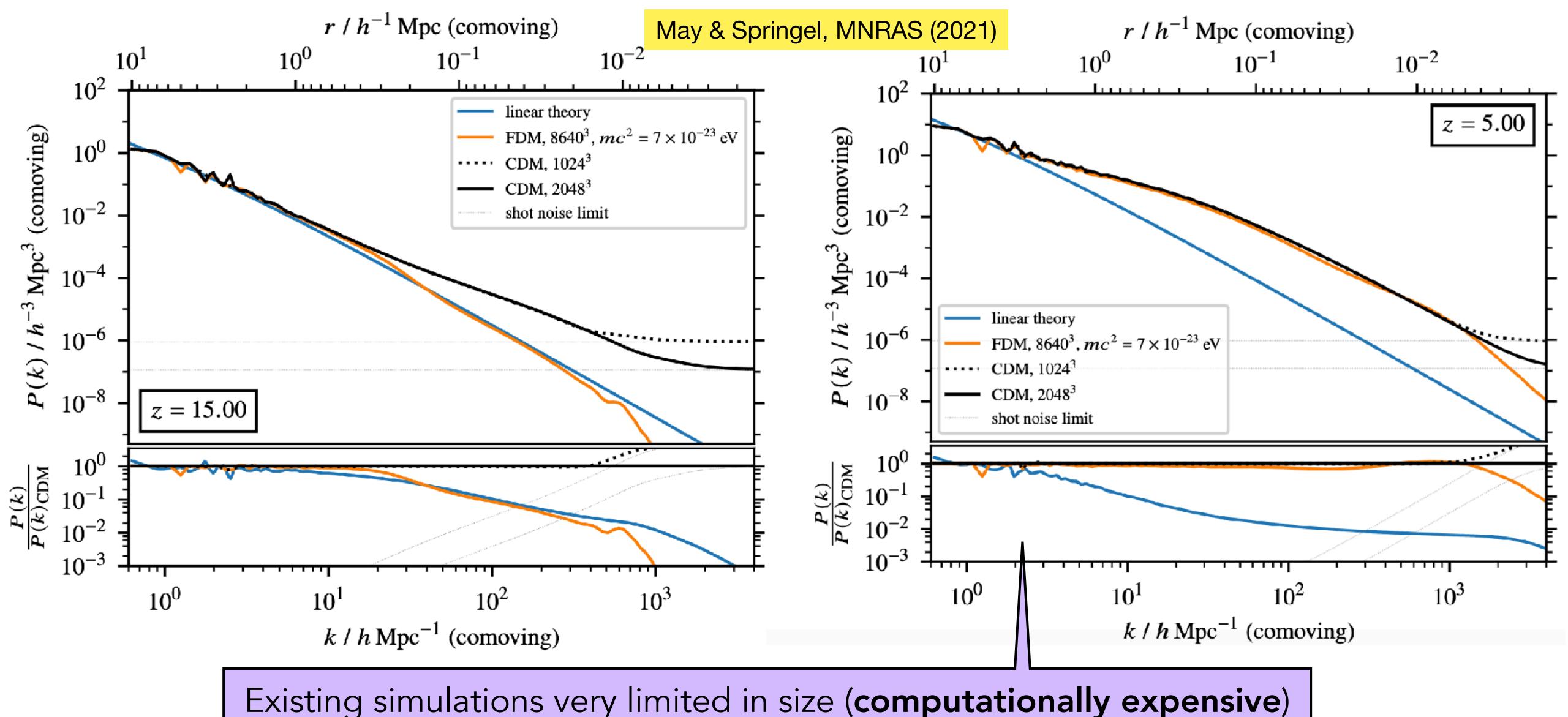
$$\rho = \int f d^3v$$

FUZZY VS COLD DARK MATTER



May & Springel (2022), arXiv:2209.14886





Schroedinger-Poisson Equations

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + mV\psi,$$

$$\nabla^2 V = 4\pi G(\rho - \overline{\rho}),$$

Very computationally expensive due to requirement of small step size & fine resolution (need to resolve wave phenomena)

$$\begin{pmatrix}
\psi \leftarrow e^{-i\frac{m}{\hbar}\frac{\Delta t}{2}\Phi}\psi \\
\psi \leftarrow \text{IFFT}\left(e^{-i\frac{\hbar}{m}\frac{\Delta t}{2}k^{2}} \text{FFT}(\psi)\right) \\
\Phi \leftarrow \text{IFFT}\left(-\frac{1}{k^{2}} \text{FFT}\left(4\pi Gm(|\psi|^{2} - \langle |\psi|^{2}\rangle)\right)\right) \\
\psi \leftarrow e^{-i\frac{m}{\hbar}\frac{\Delta t}{2}\Phi}\psi$$

kick

drift

update potential

kick

Choice of time step: $\Delta t < \min\left(\frac{4}{9\pi}\frac{m}{\hbar}a^2\Delta x^2\right.$, $2\pi\frac{\hbar}{m}a\frac{1}{|\Phi_{\max}|}\right)$

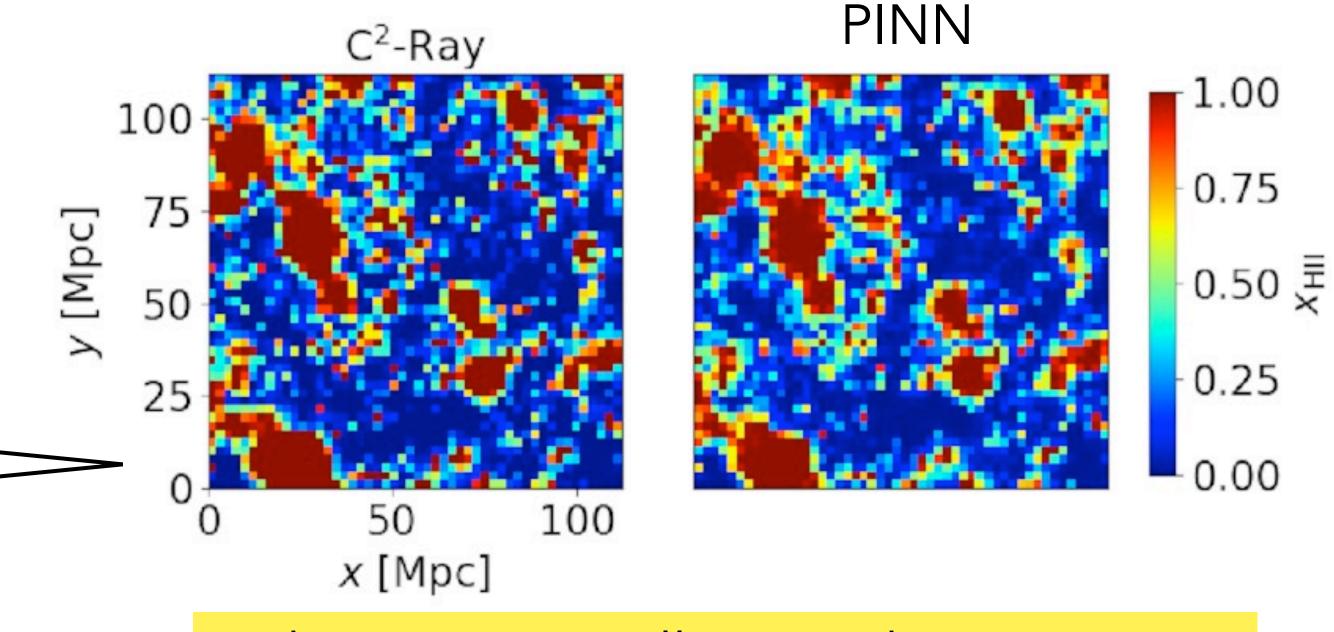
Physics-informed neural networks (PINNs) incorporate physical laws to efficiently solve PDEs

- Can be semi-supervised or unsupervised (no training data)
- Can take advantage of Al hardware like GPUs, tensor cores, etc
- Can easily validate network outputs using the PDE loss

Semi-supervised PINN can predict entire 4D reionization history with only 5 snapshots from true simulation and the constraint:

$$\frac{dx_{\rm HII}}{dt} = (1 - x_{\rm HII})\Gamma - C\alpha_{\rm B}n_{\rm H}x_{\rm HII}^2$$

Training time: **1.5 hours** on one NVIDIA Tesla P100 16GB GPU



Korber, Bianco, Tolley, Kneib. MNRAS (2023) DOI: 10.1093/mnras/stad615

Schroedinger-Poisson Equations

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi + mV\psi,$$

$$\nabla^2 V = 4\pi G(\rho - \overline{\rho}),$$

$$ho \equiv |\psi|^2$$

Can we develop a PINN to solve for ψ ?

Schroedinger-Poisson Equations

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + mV\psi,$$

$$\nabla^2 V = 4\pi G(\rho - \overline{\rho}),$$

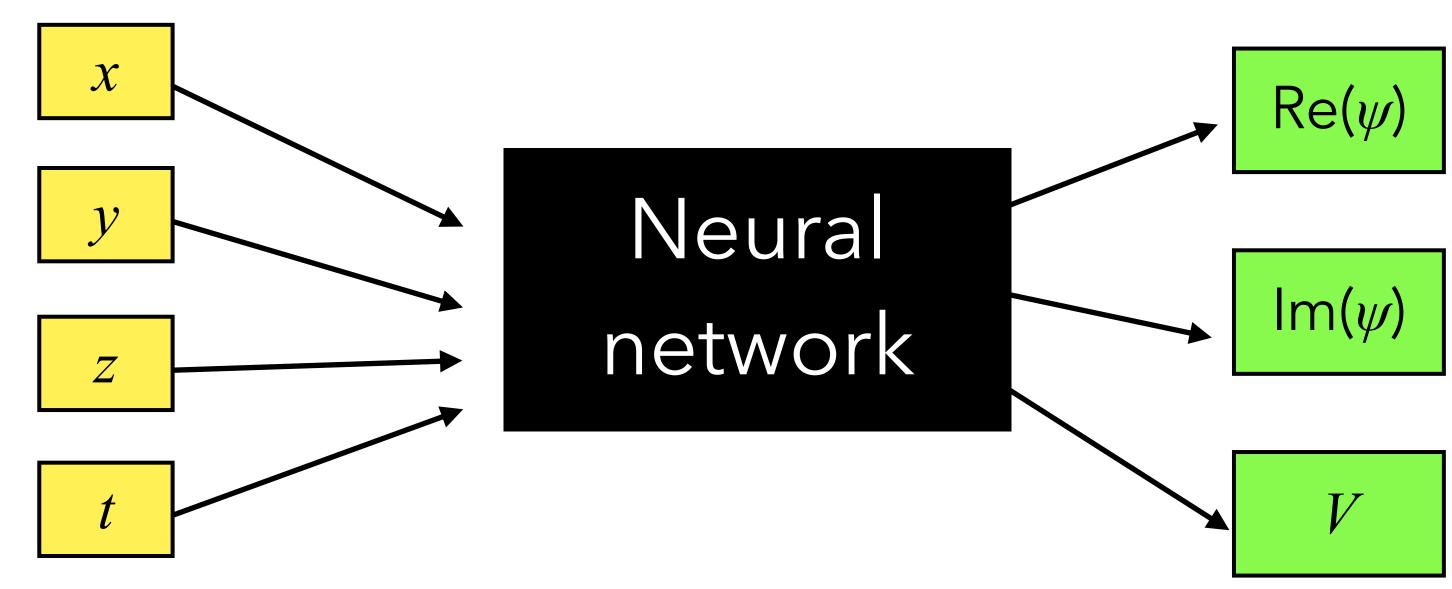
$$ho \equiv |\psi|^2$$

Theorem (Cybenko, 1989)

Let σ be any continuous sigmoidal function. Then, the finite sums of the form

$$g(x) = \sum_{j=1}^{N} w_j^2 \sigma((w_j^1)^T x + b_j^1)$$

are dense in $C(I_d)$.

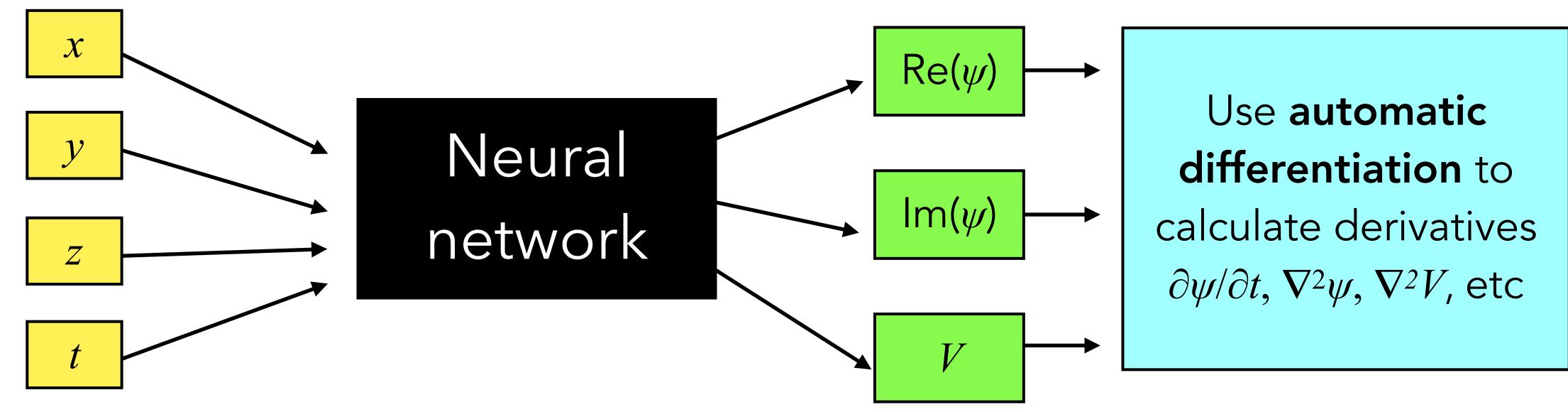


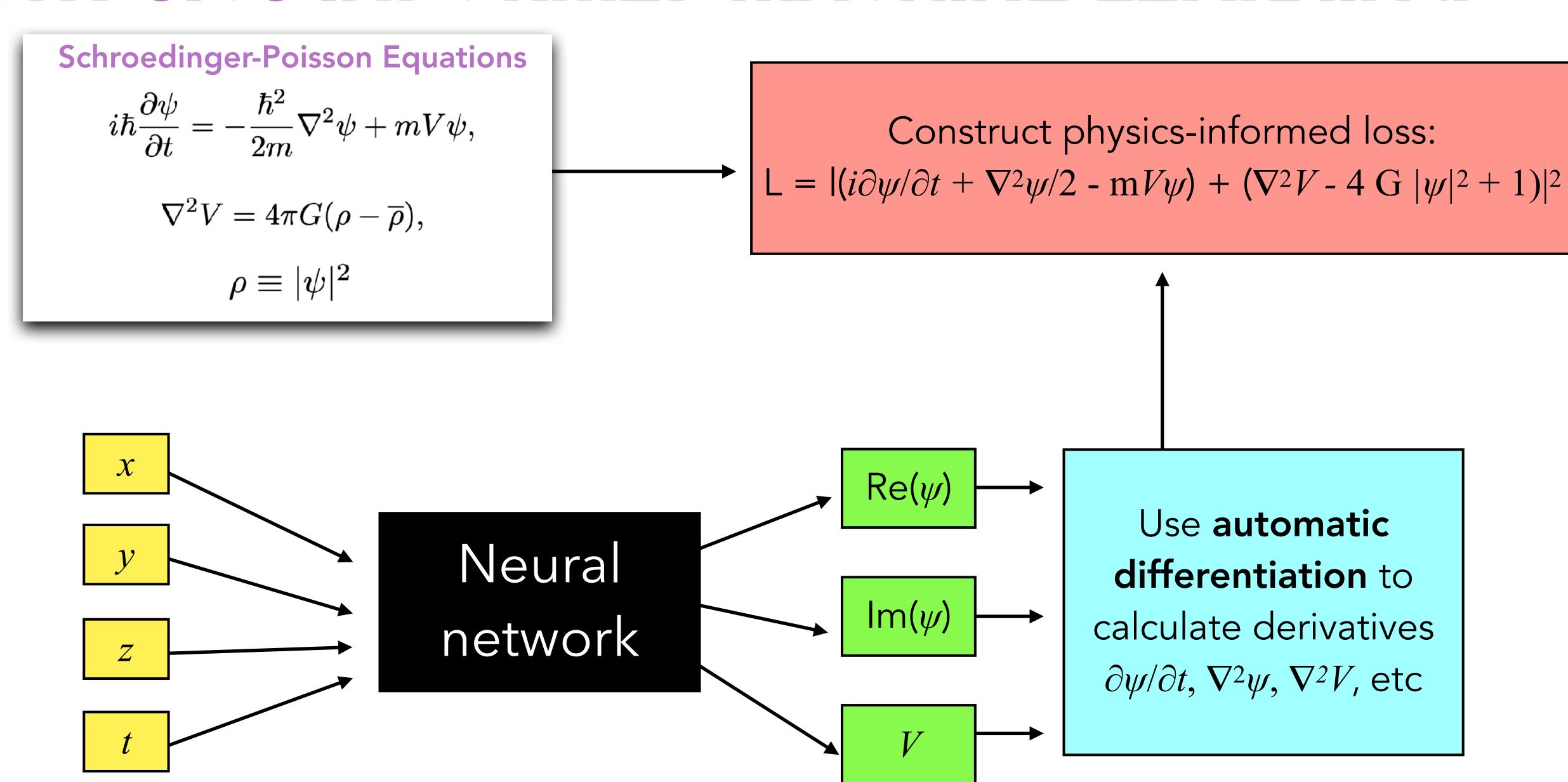
Schroedinger-Poisson Equations

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2\psi + mV\psi,$$

$$\nabla^2 V = 4\pi G(\rho - \overline{\rho}),$$

$$\rho \equiv |\psi|^2$$

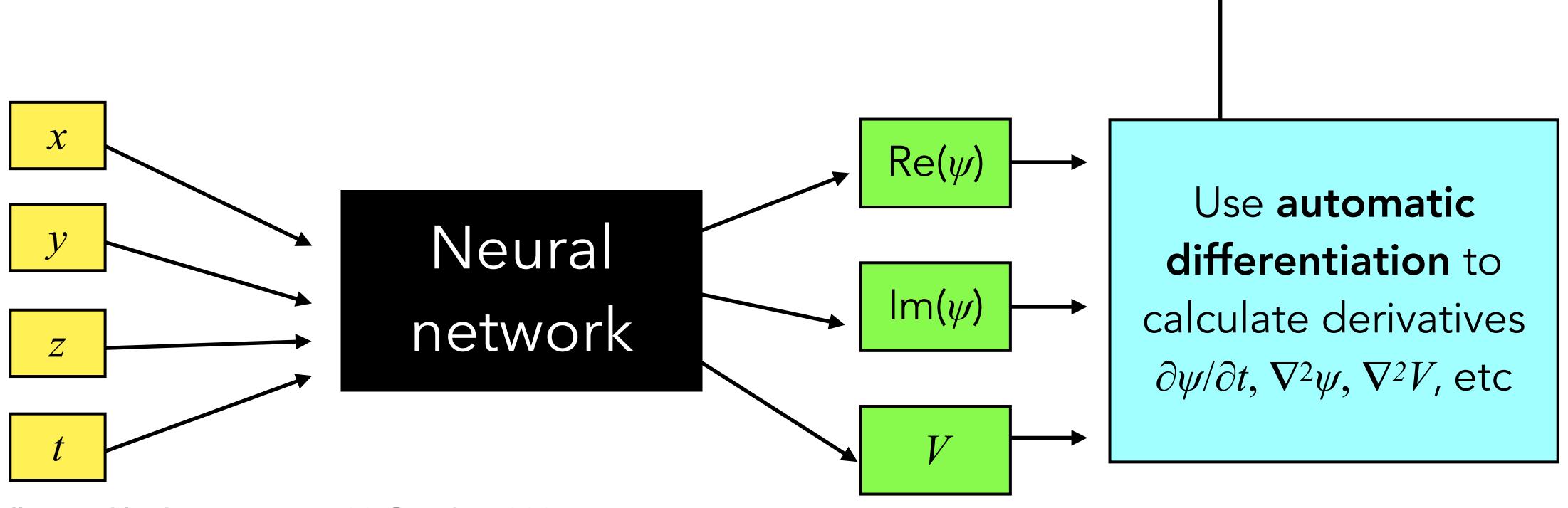


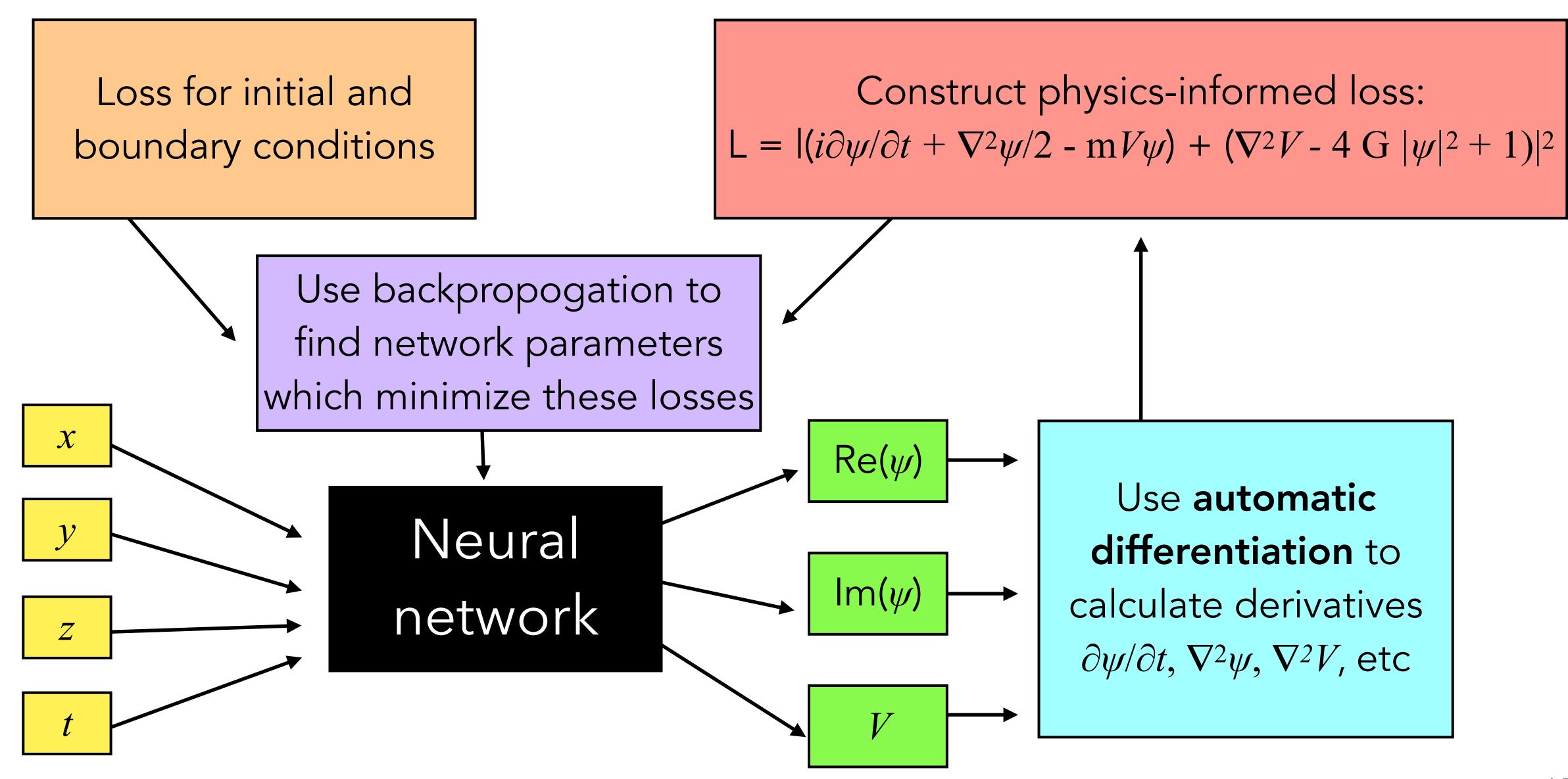


Loss for initial and boundary conditions

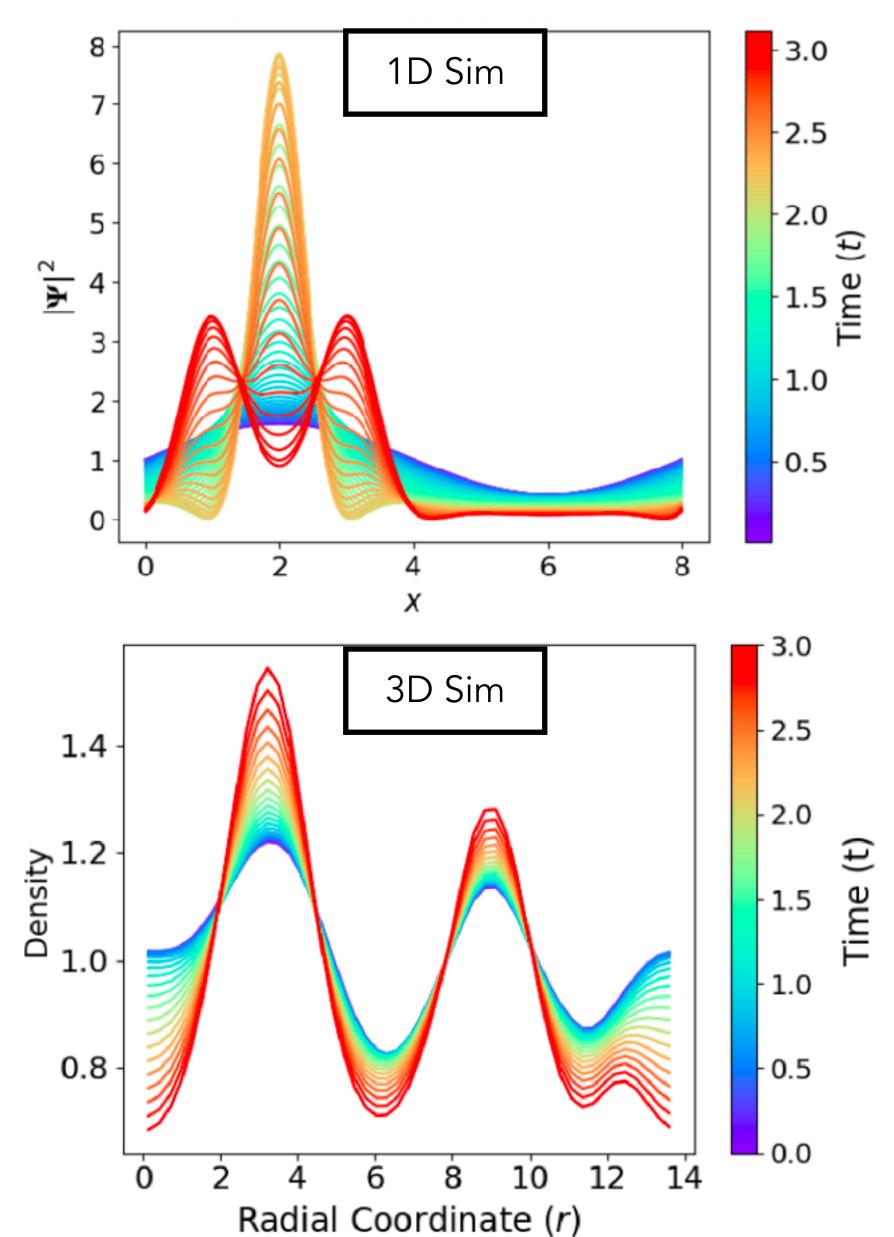
Construct physics-informed loss:

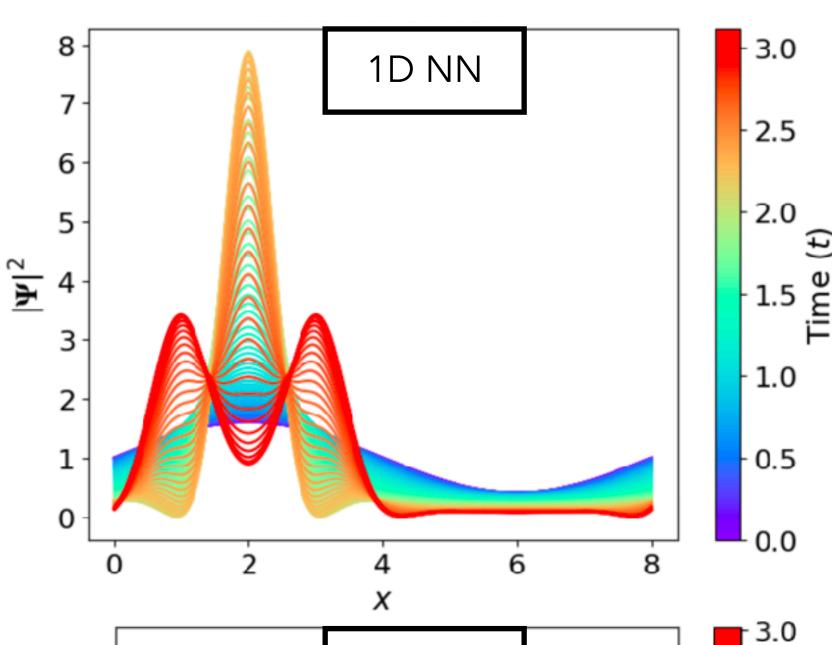
 $L = |(i\partial \psi/\partial t + \nabla^2 \psi/2 - mV\psi) + (\nabla^2 V - 4 G |\psi|^2 + 1)|^2$





SOLVING FUZZY DARK MATTER





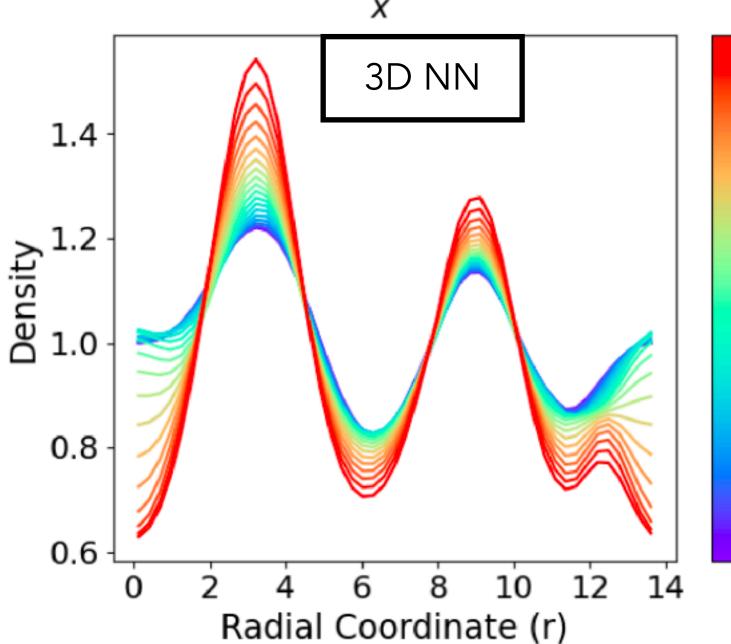
2.5

2.0

1.5

1.0

- 0.5

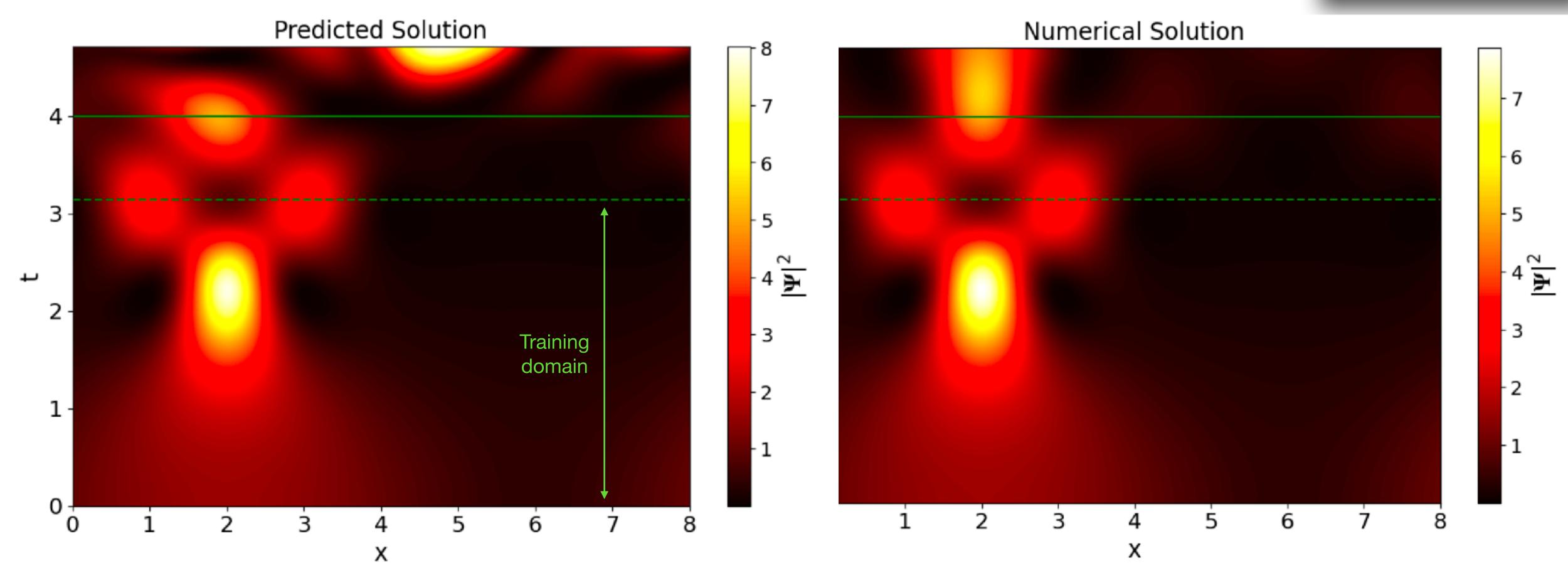


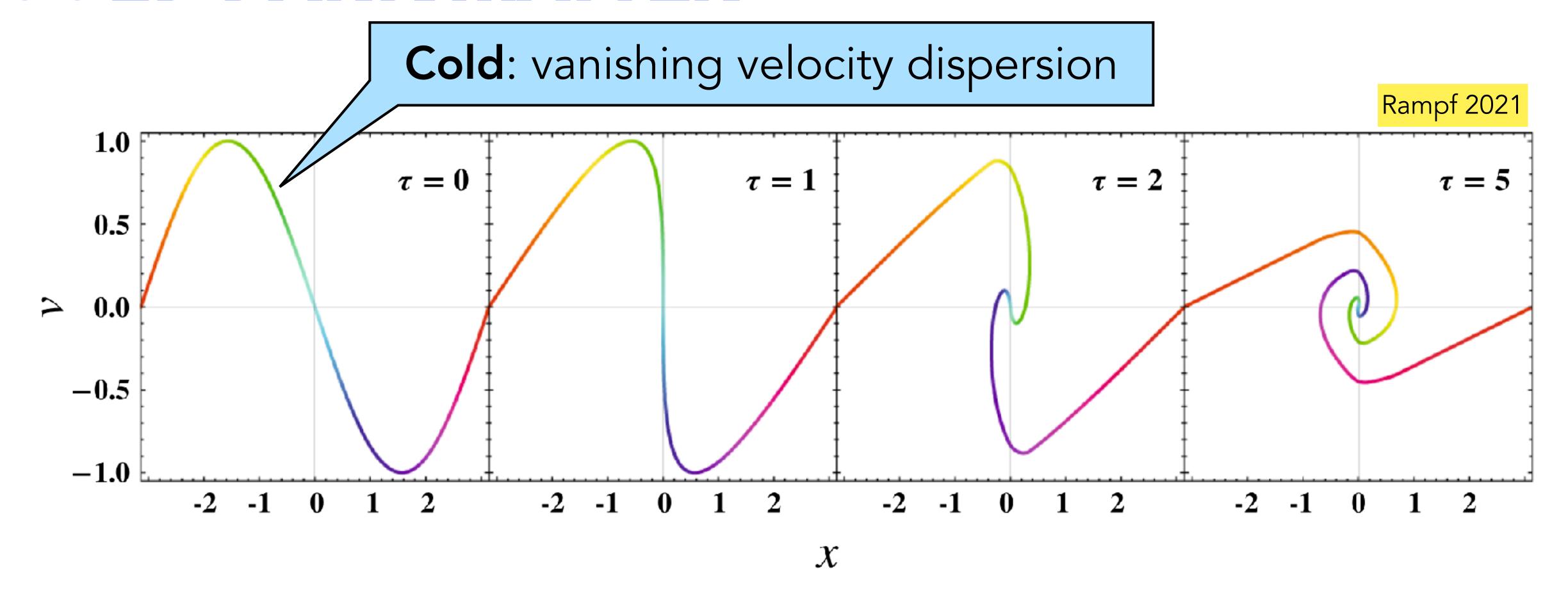
Mishra & Tolley 2025, *ApJ* **988** 114

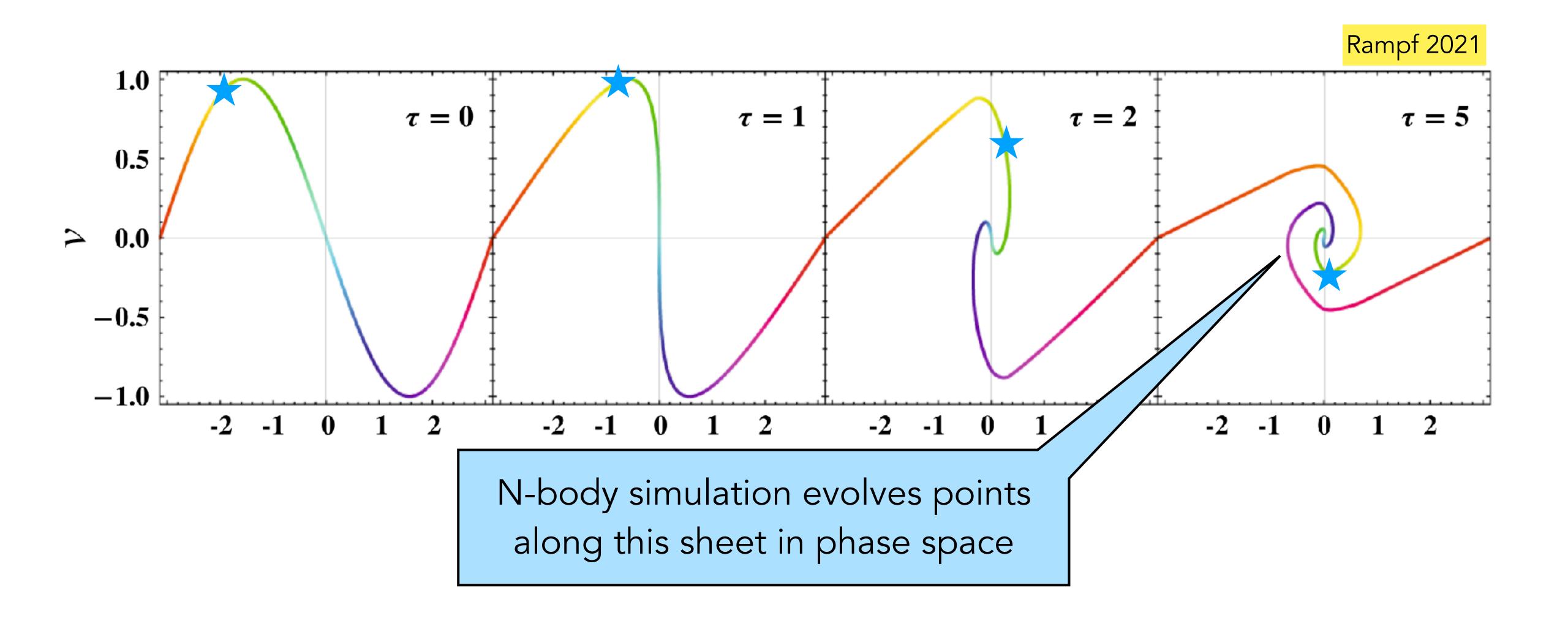
Unsupervised neural network predicting Fuzzy DM dynamics using only physics constraints and initial conditions

SOLVING FUZZY DARK MATTER

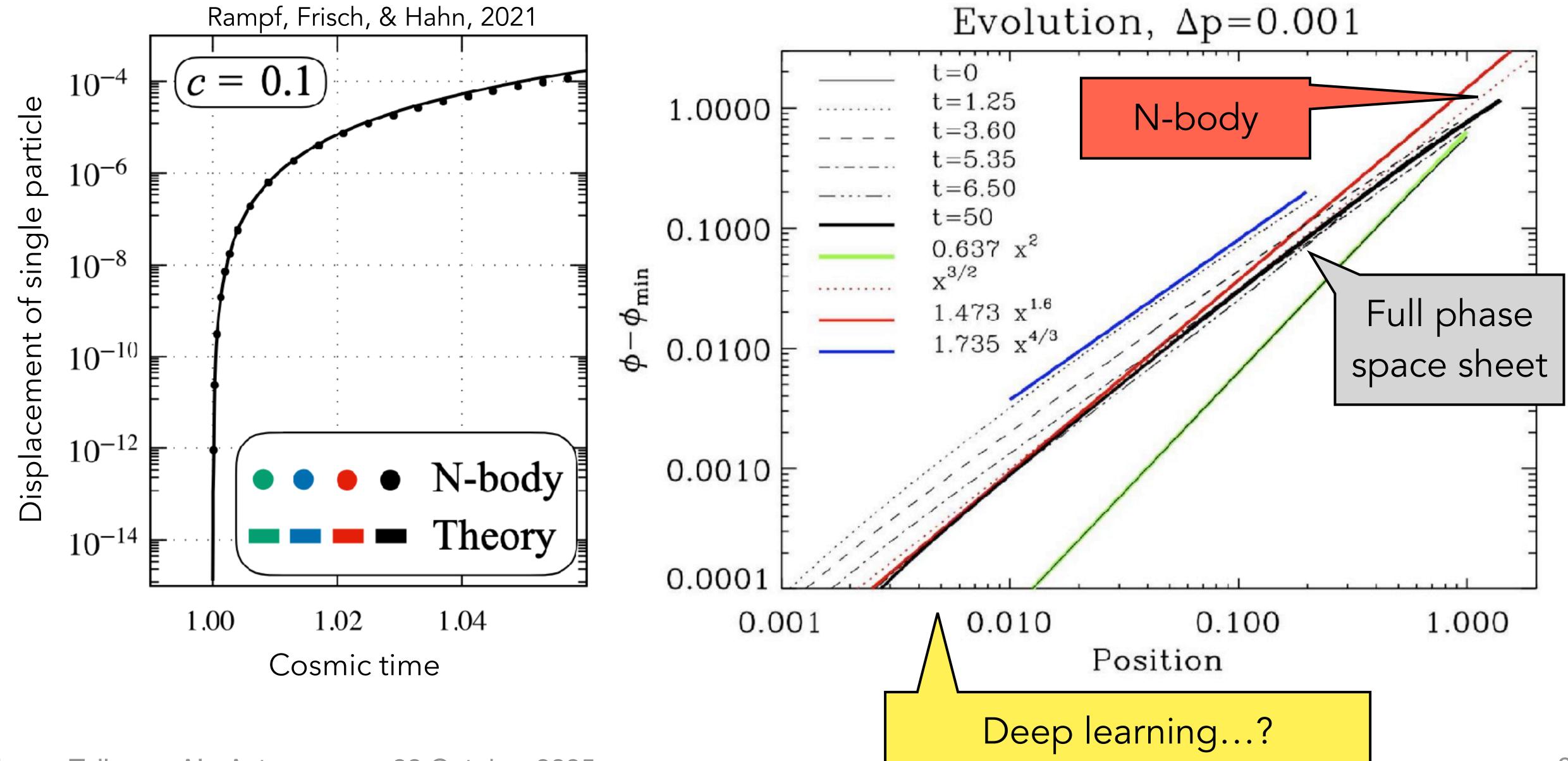
Mishra & Tolley 2025, *ApJ* **988** 114



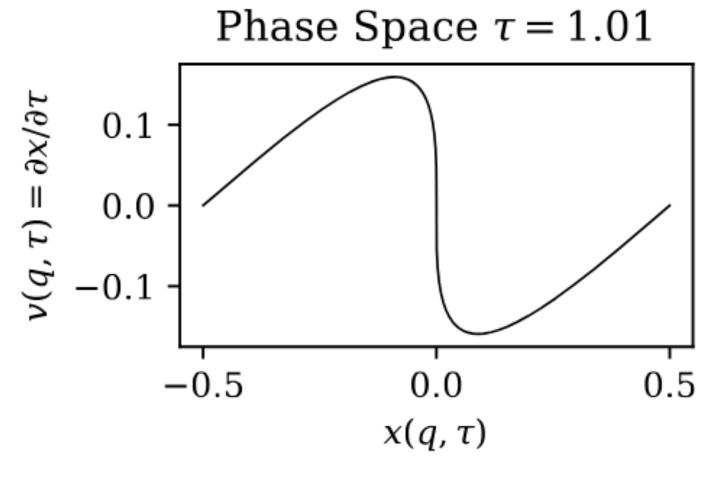


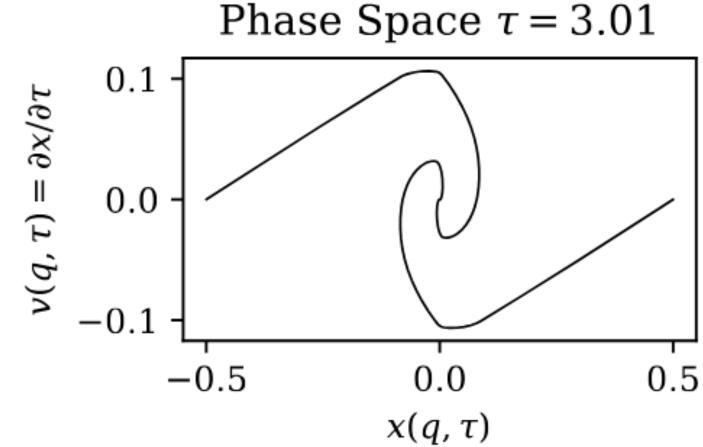


Colombi & Touma 2014

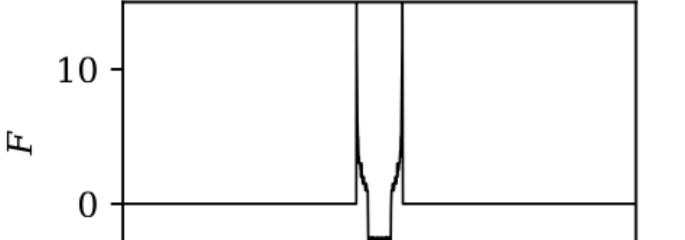


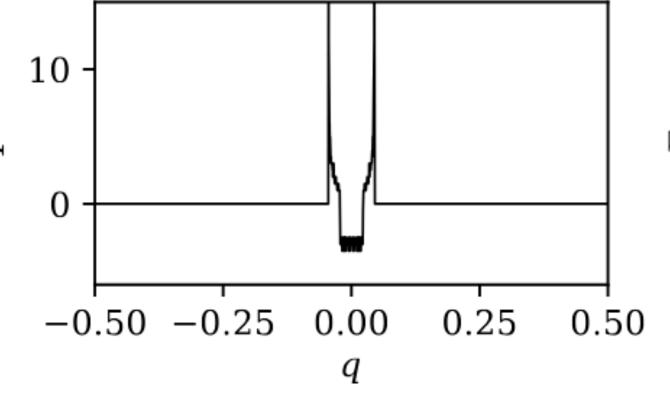
Cerardi, Tolley, Mishra, submitted to MNRAS

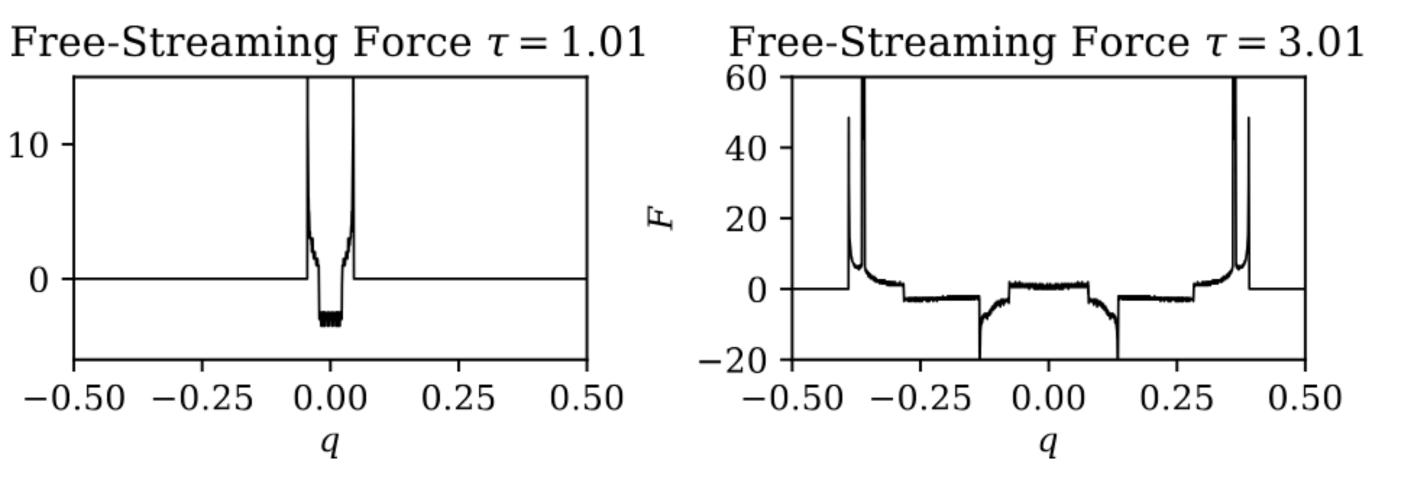




Discontinuous force -> discontinuous acceleration, very difficult to model with traditional neural network







Theorem (Cybenko, 1989)

Let σ be any continuous sigmoidal function. Then, the finite sums of the form

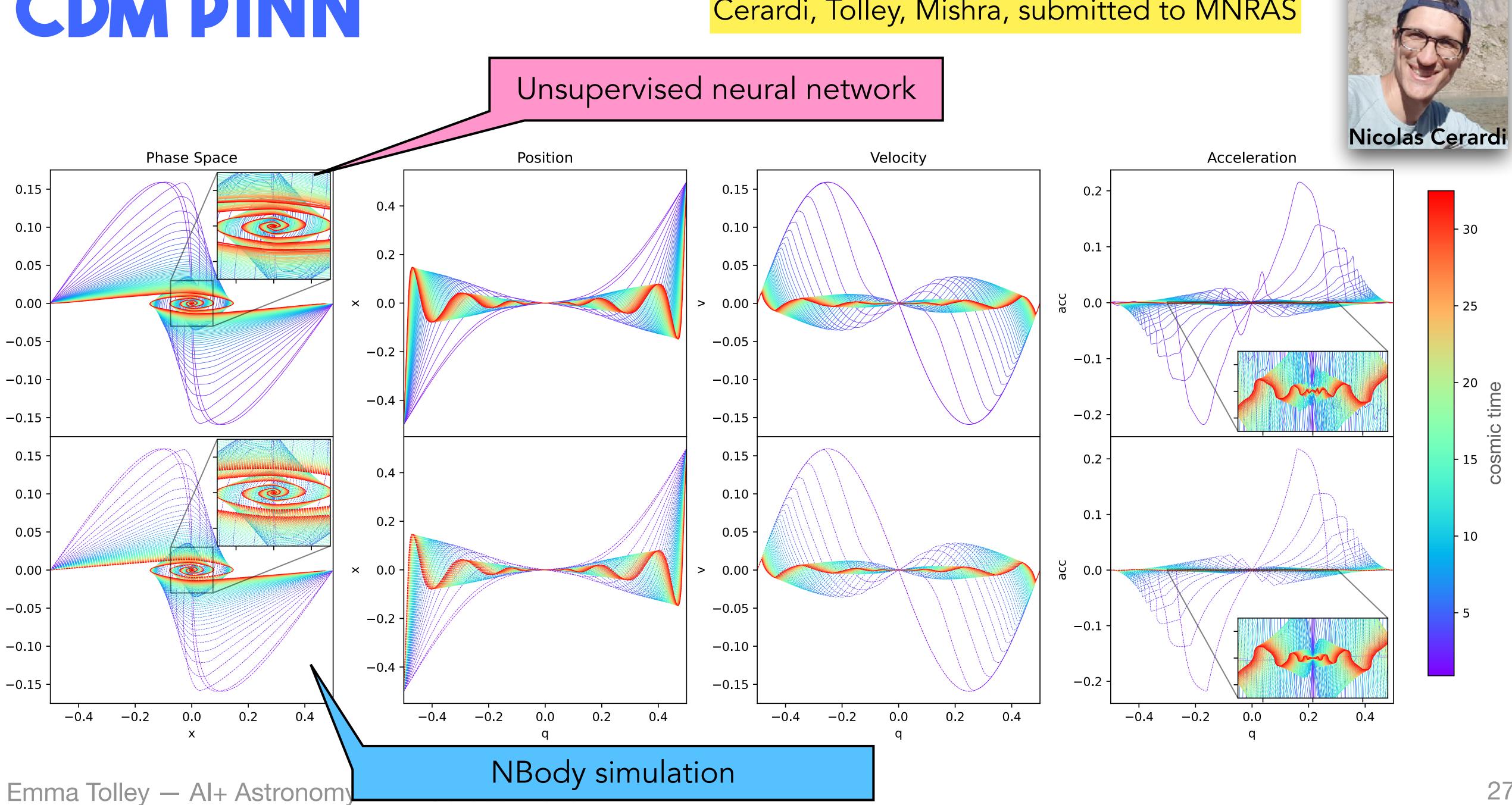
$$g(x) = \sum_{j=1}^{N} w_j^2 \sigma((w_j)^T + b_i^1)$$

are dense in $C(I_d)$.

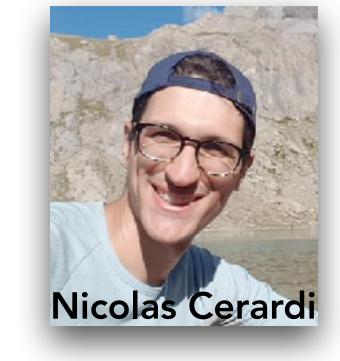
Model	Multi-Layer Perceptron (MLP)	Kolmogorov-Arnold Network (KAN)
Theorem	Universal Approximation Theorem	Kolmogorov-Arnold Representation Theorem
Formula (Shallow)	$f(\mathbf{x}) \approx \sum_{i=1}^{N(\epsilon)} a_i \sigma(\mathbf{w}_i \cdot \mathbf{x} + b_i)$	$f(\mathbf{x}) = \sum_{q=1}^{2n+1} \Phi_q \left(\sum_{p=1}^n \phi_{q,p}(x_p) \right)$
Model (Shallow)	fixed activation functions on nodes learnable weights on edges	(b) learnable activation functions on edges sum operation on nodes
Formula (Deep)	$MLP(\mathbf{x}) = (\mathbf{W}_3 \circ \sigma_2 \circ \mathbf{W}_2 \circ \sigma_1 \circ \mathbf{W}_1)(\mathbf{x})$	$KAN(\mathbf{x}) = (\mathbf{\Phi}_3 \circ \mathbf{\Phi}_2 \circ \mathbf{\Phi}_1)(\mathbf{x})$
Model (Deep)	(c) W_3 σ_2 $monlinear, fixed$ W_2 $monlinear, fixed$ $monlinear, fixed$ $monlinear, fixed$	(d) $\Phi_{3} \rightarrow \Phi_{2} \rightarrow \begin{array}{c} nonlinear, \\ learnable \end{array}$

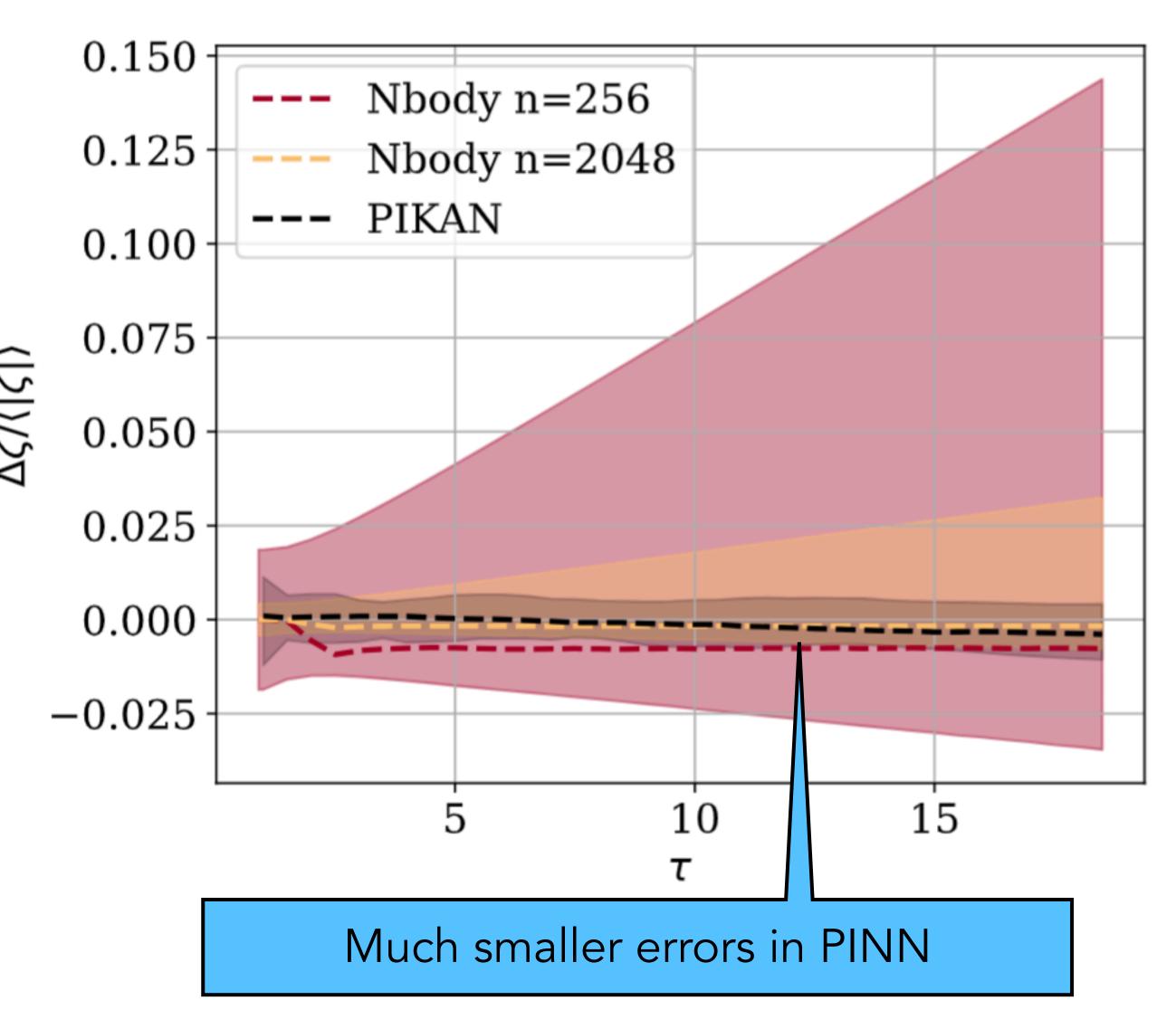
CDM PINN

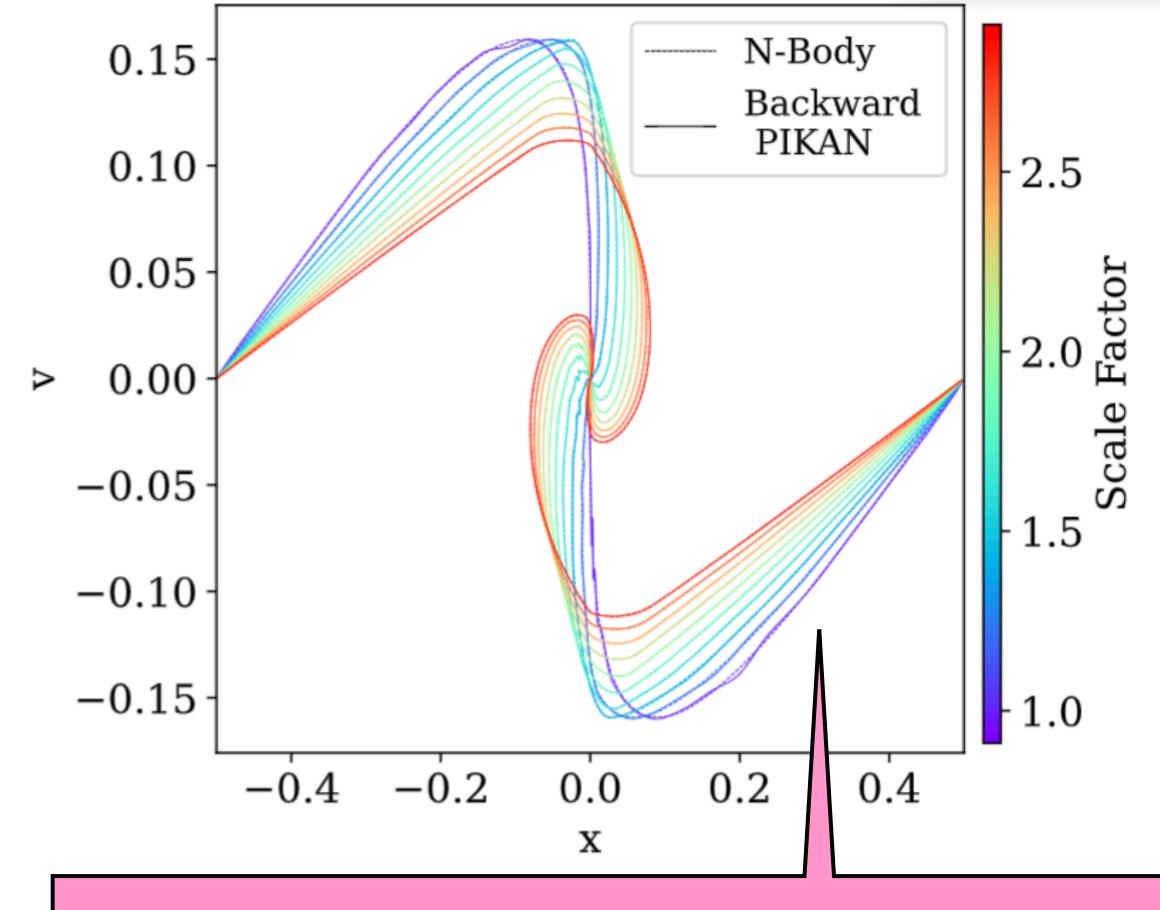
Cerardi, Tolley, Mishra, submitted to MNRAS



CDM PINN







Can also evolve simulation backwards in time

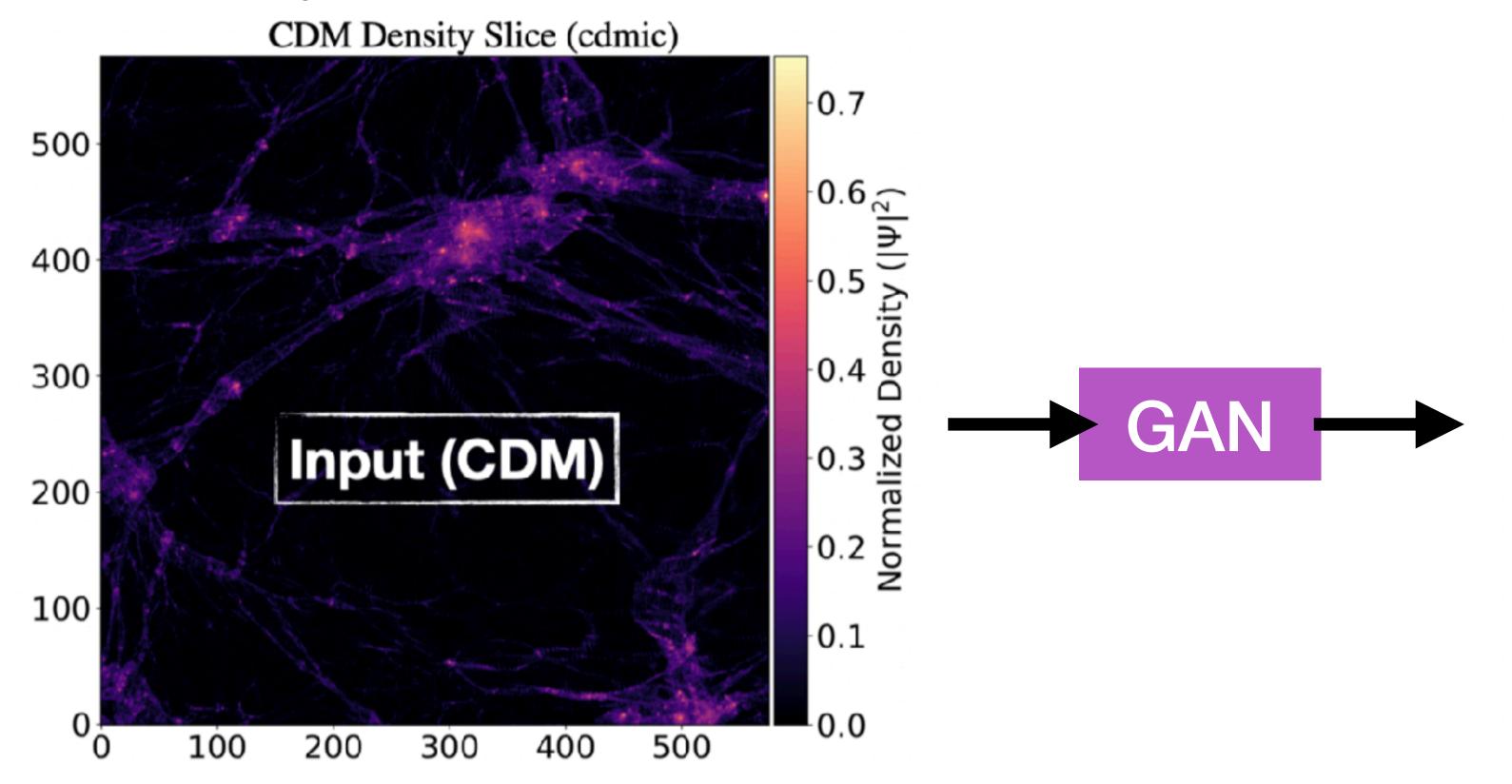
...IN SUMMARY

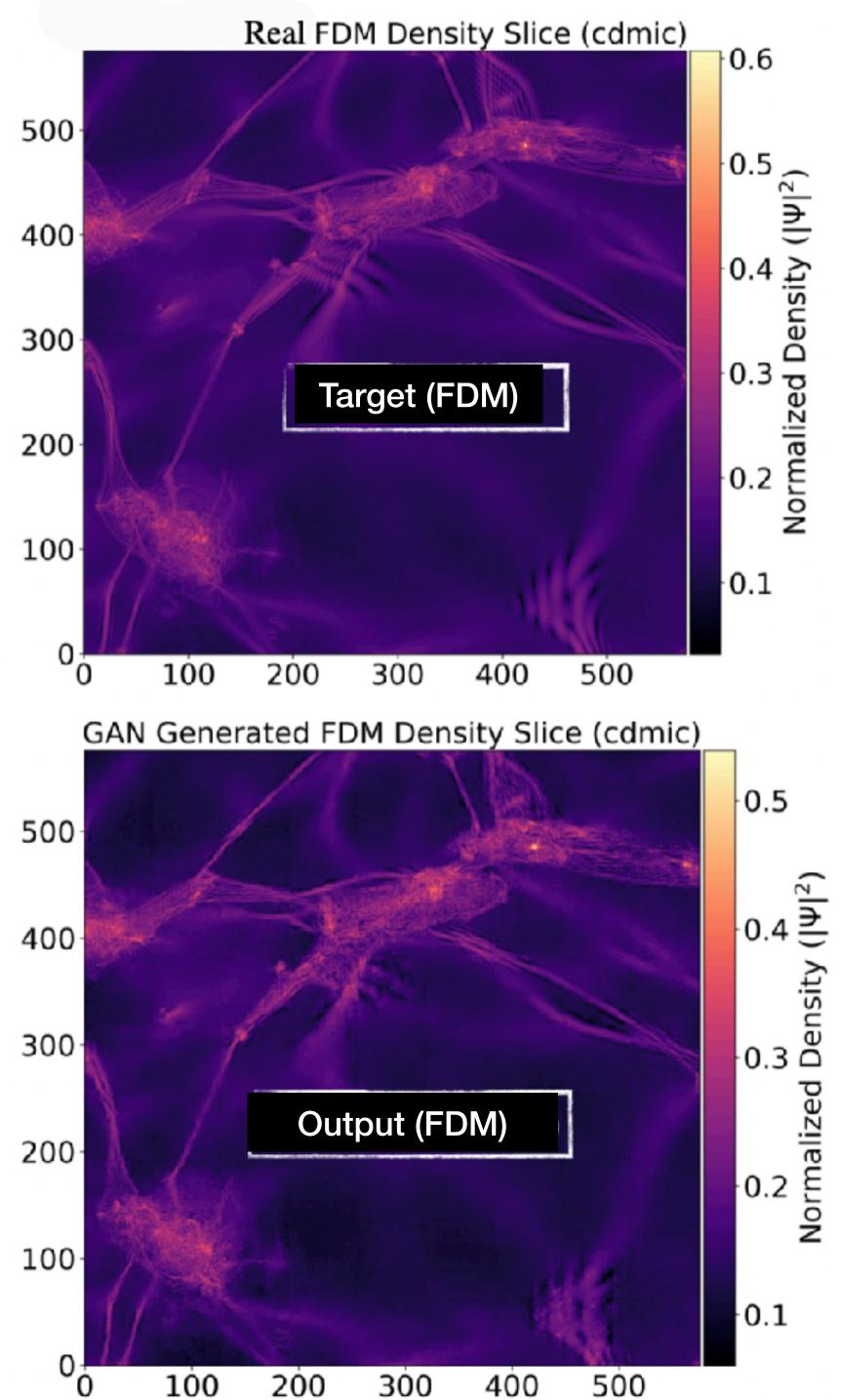
- Physics-informed neural networks as PDE solvers for cosmology
 - Challenges: Extremely large space/time domains needed for cosmology, and long-ranged gravitational force needs to be calculated across entire spatial domain
- Exploring physics informed neural networks to solve PDEs for CDM (1D only) and FDM (1D & 3D)
 - Initial results show excellent results, including better error accumulation compared to numerical solvers
 - But so far not computationally cheaper compared to traditional methods
 - Exploring implementations with NVIDIA PhysicsNeMo to improve performance

...NEXT STEPS

Now exploring hybrid methods, conditional generative models with physics constraints

Plots by A. Mishra

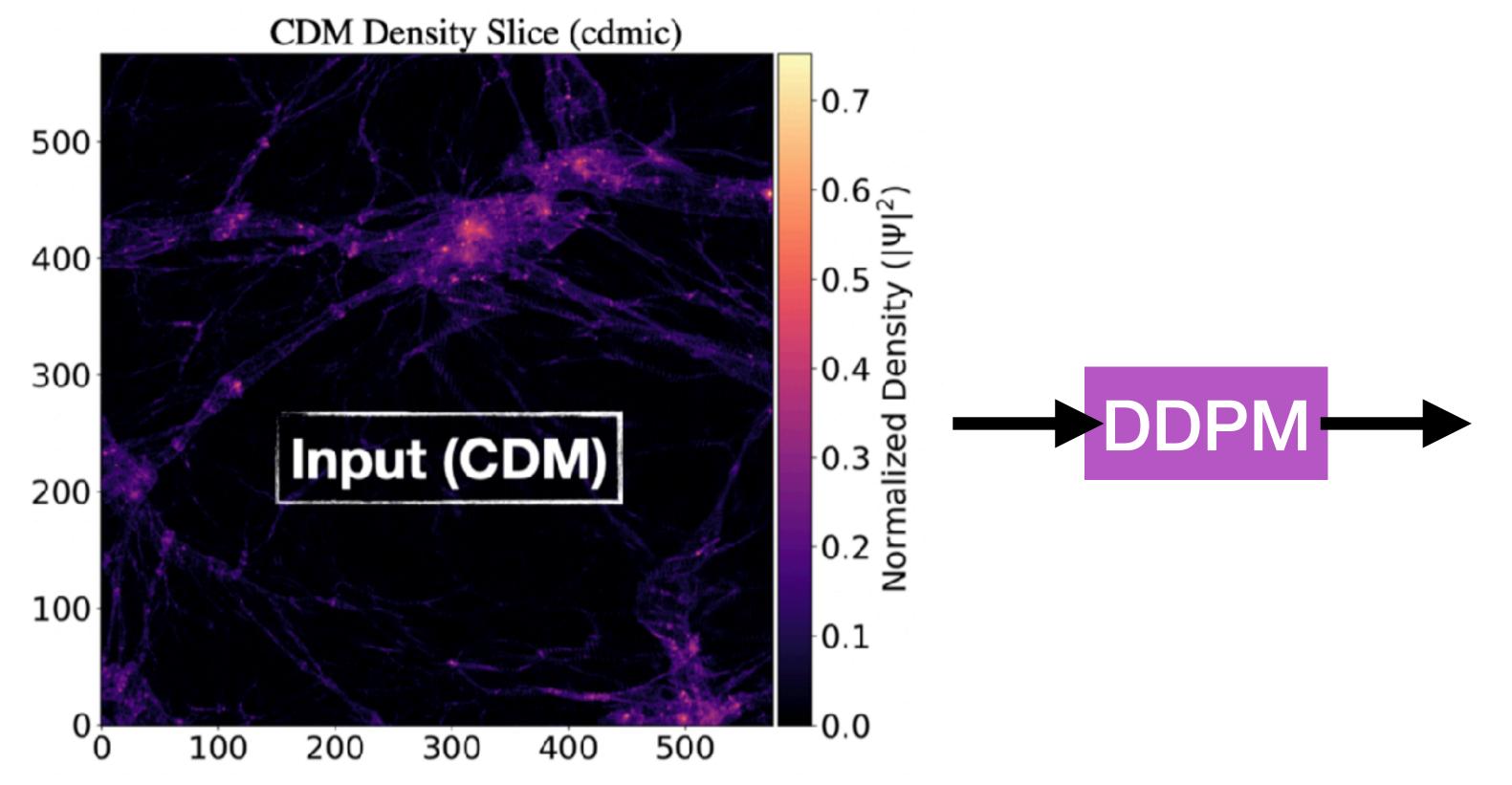


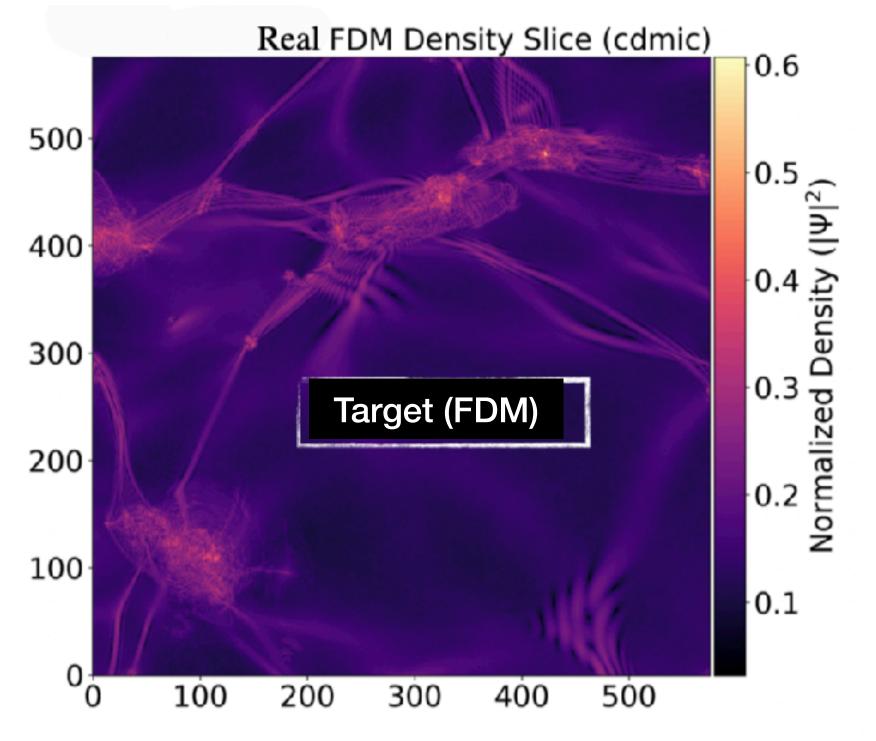


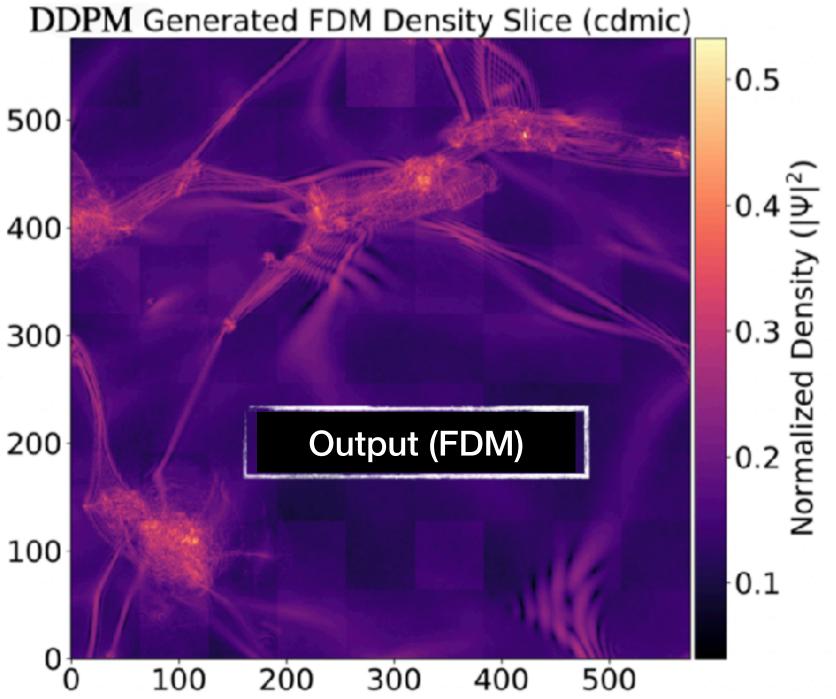
...NEXT STEPS

Now exploring hybrid methods, conditional generative models with physics constraints

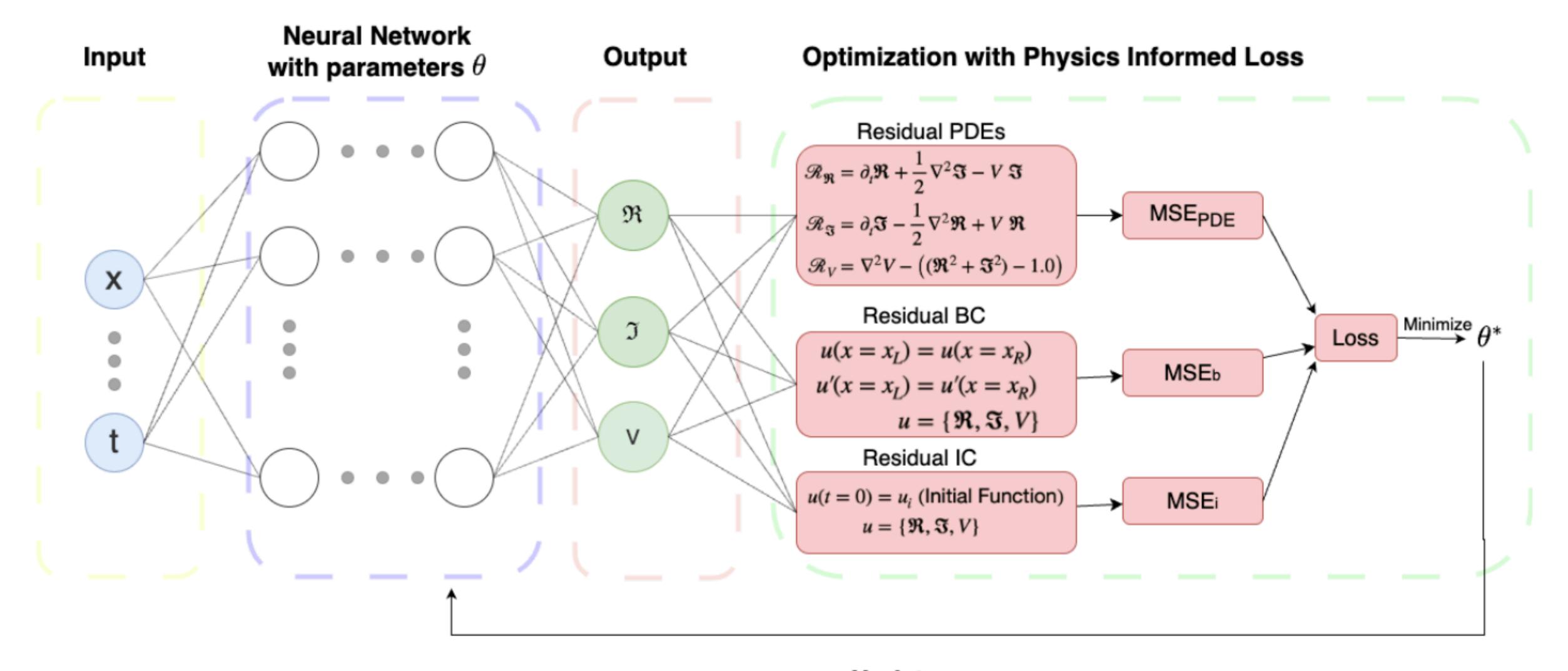
Plots by A. Mishra





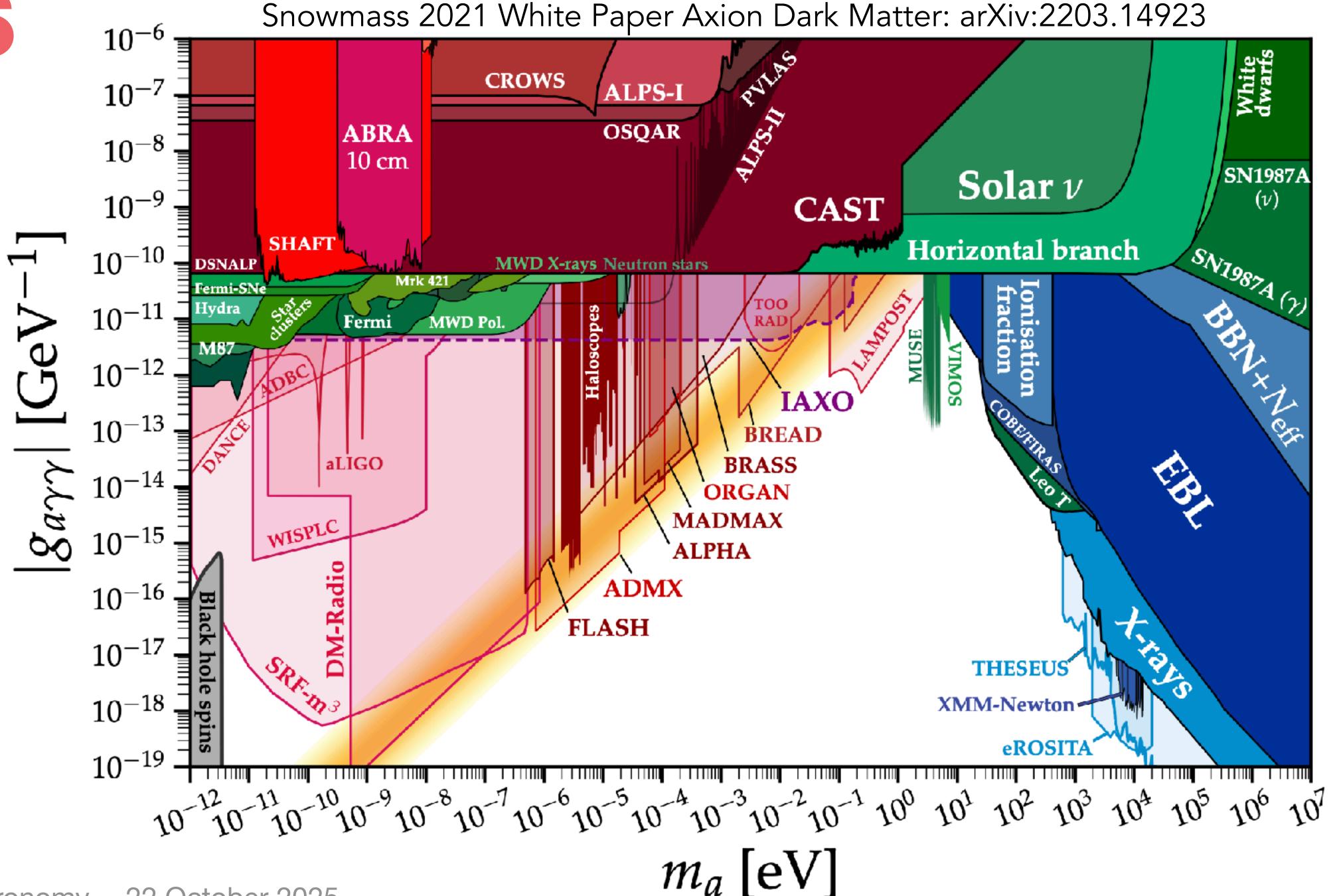


PHYSICS-INFORMED DEEP LEARNING

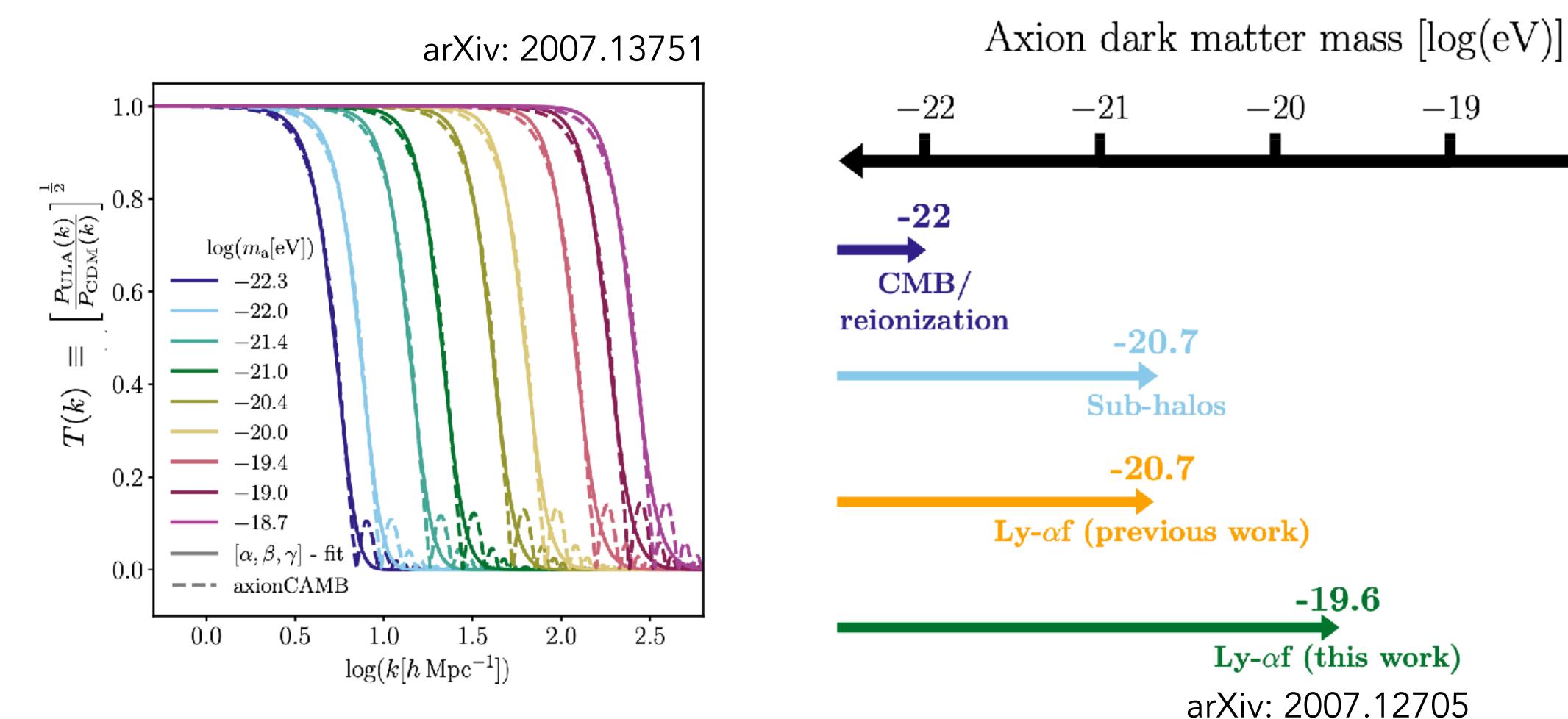


Updates

AXIONS & ALPS



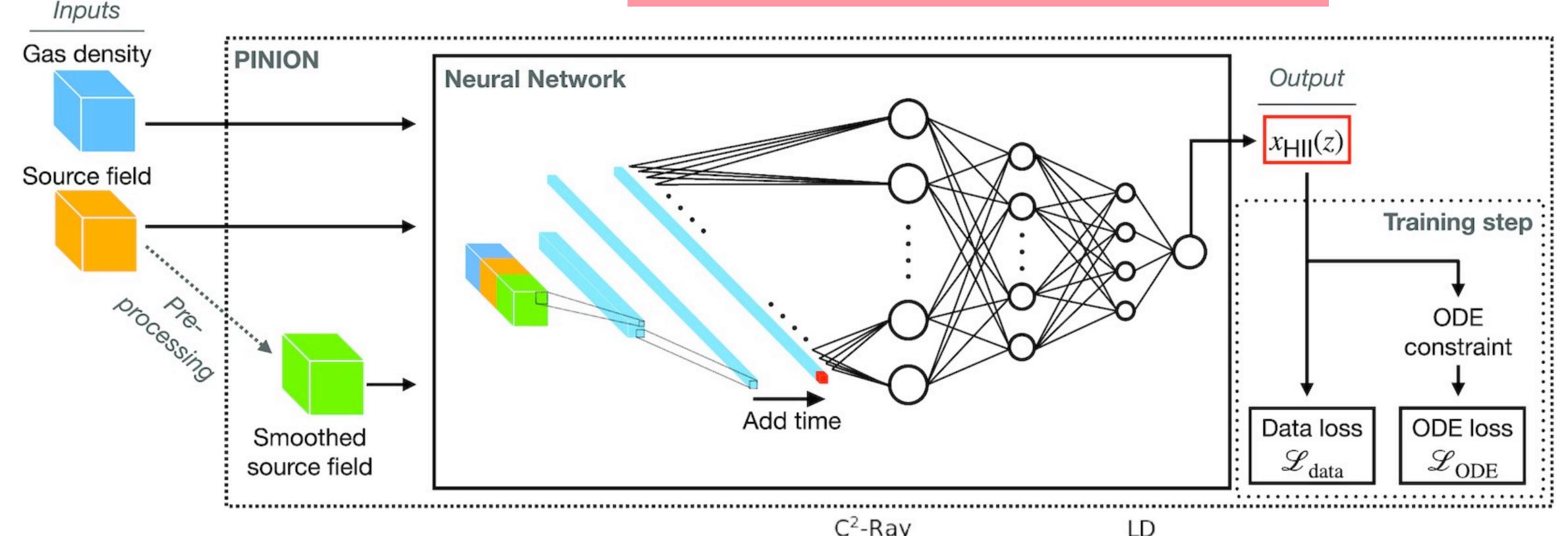
Linear theory predicts sharp cutoff in power spectrum due to quantum pressure

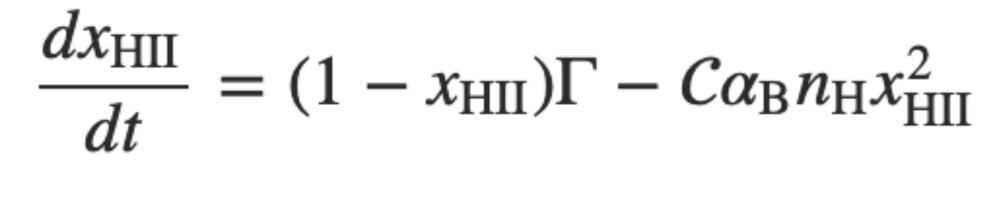


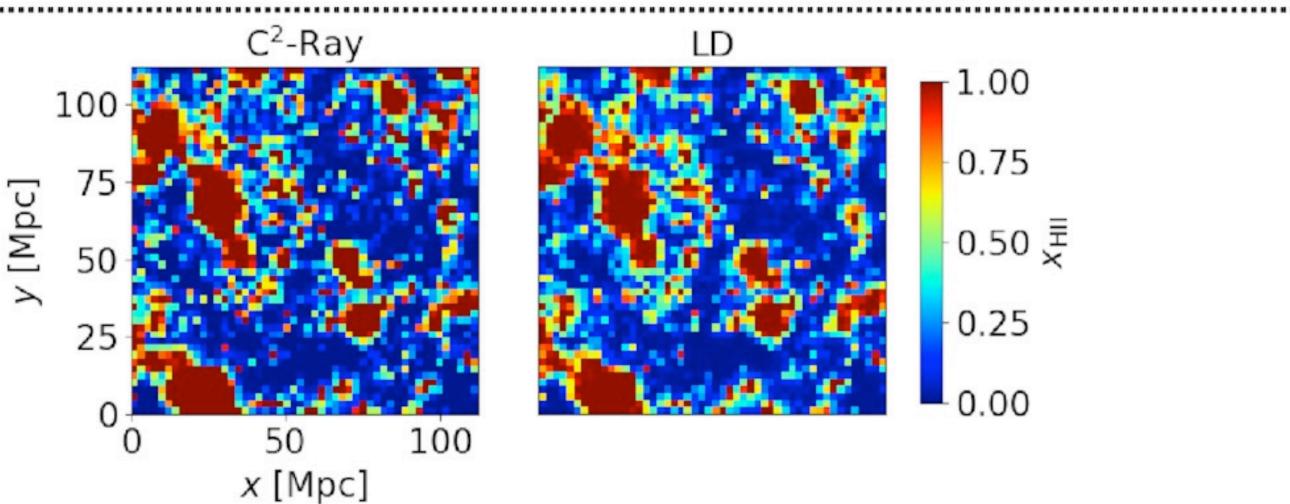
BHSR

REIONIZATION

Korber, Bianco, Tolley, Kneib. MNRAS (2023) DOI: 10.1093/mnras/stad615







DEED LEARNING

Neural networks are universal function approximators

$$f(x) = y$$

$$NN(x, \theta) = \tilde{y}$$

Model parameters θ minimized using loss function

With enough neurons and an appropriate set of network weights and biases θ :

$$|y-\tilde{y}|<\epsilon$$

$$\mathcal{L}_{ ext{MSE}} = rac{1}{n} \sum_{i}^{n} (ilde{y}_i - y_i)^2$$

LEARNING BIAS

Let's go back to the classic MSE loss

$$f(x) = y$$

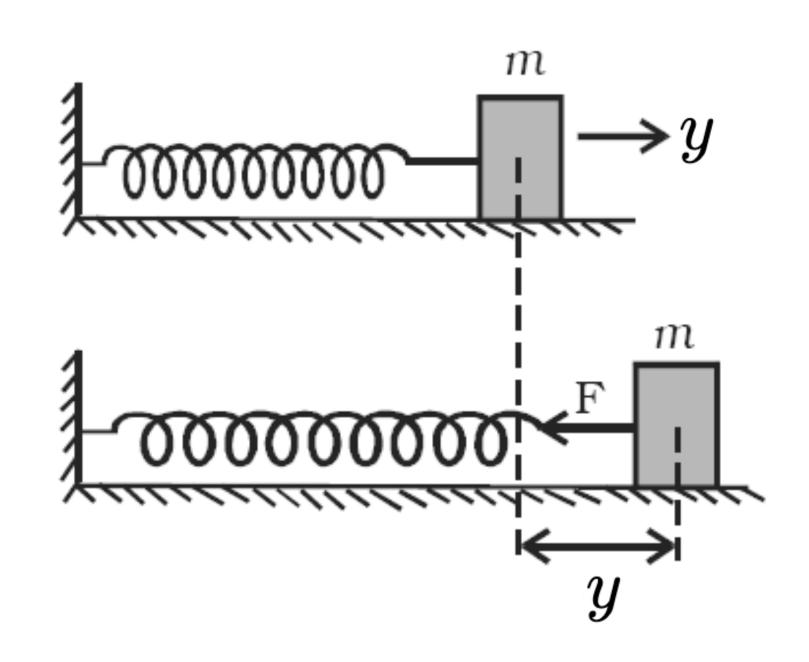
$$NN(x, \theta) = \tilde{y}$$

$$\mathcal{L}_{ ext{MSE}} = rac{1}{n} \sum_{i}^{n} ig(ilde{y}_i - y_i ig)^2 = rac{1}{n} \sum_{i}^{n} ig(ext{NN}(x_i, heta) - y_i ig)^2$$

Limited by sampling of x and y

LEARNING BIAS

A simple physics example



Harmonic oscillator if x is time and y is displacement

$$m\frac{\partial^2 y}{\partial x^2} + ky = 0$$

f(x) = y obeys this dynamical equation, can use this to constrain the NN

LEARNING BIAS

A simple physics example

$$m\frac{\partial^2 y}{\partial x^2} + ky = 0$$

Does not need samples of y! => unsupervised learning

$$\mathcal{L}_{\text{ODE}} = \frac{1}{n} \sum_{i}^{n} \left(m \frac{\partial^{2} \tilde{y}_{i}}{\partial x^{2}} + k \tilde{y}_{i} \right)^{2} = \frac{1}{n} \sum_{i}^{n} \left(m \frac{\partial^{2}}{\partial x^{2}} \text{ NN}(x_{i}, \theta) + k \text{ NN}(x_{i}, \theta) \right)^{2}$$

If Loss=0 then network solves PDE (neural solver)

PHYSICS-INFORMED NEURAL NETWORK

https://www.brown.edu/research/projects/crunch/home

Use physics-based constraints from PDEs to make network training more

efficient and generalizable

